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Abstract

The recent advent of event cameras in computer vision applications has sig-
nificantly increased the performance of traditional methods, by leveraging the
outstanding advantages of these novel sensors over conventional cameras. If on
one hand the event-based techniques have achieved impressive results, on the
other the same methods are nonetheless limited by the scarce amount of event
data required for training. In this work, we propose a learning-based solution
relying on Spiking Neural Networks that addresses this issue by generating event
data starting from the huge amount of pre-existing video datasets recorded with
conventional cameras. The Spiking Neural Networks leverage the asynchronous
nature of events to generate event data in an end-to-end fashion, starting from
high temporal resolution videos. We evaluate the method on different levels:
(i) a visual inspection of the generated events compared to the ground truth
ones; (ii) an in-depth analysis of the event rates of the generated events; (iii) an
object classification task validated on the N-Caltech101 dataset.
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Nomenclature

Notation

u(t) neuron’s state/membrane potential

si(t) ith input spike train to a neuron

s(t) neuron’s output spike train

ŝ(t) target spike train

t
(f)
i time of the f th spike of the ith input

ϵ(·) spike response kernel

ν(·) refractory response kernel

wi synaptic weight of the ith input spike train

ai(t) spike response signal

Acronyms and Abbreviations

HDR High Dynamic Range

ANN Artificial Neural Network

SNN Spiking Neural Network

SRM Spike Response Model

PSP Post Synaptic Potential
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Chapter 1

Introduction

Visual perception represents a core aspect of modern engineering, especially
in areas like robotics or artificial intelligence. Standard cameras historically
represent the main sensors involved in the vast majority of applications and
although their remarkable achievements, they still present limitations that make
them unfeasible to operate under certain circumstances. Lately, attention has
shifted onto a novel type of sensor which is achieving resounding success in
computer vision: event cameras.

Event cameras are innovative sensors that offer significant advantages with re-
spect to standard cameras. Contrary to traditional cameras, which operate by
synchronously opening and closing a shutter to let light in and capture images
at fixed rates, event cameras are build in a totally different way. In event cam-
eras each pixel is a light-sensitive sensor that operates independently and that
is programmed to collect data whenever the amount of light it receives either
increases or decreases by a certain quantity. For this reason, event cameras
are more responsive than conventional cameras, leading to a significantly higher
temporal resolution and a low latency, in the order of microseconds. In addition
to that, they are characterized by a high dynamic range (HDR) and no motion
blur, allowing them to be suitable in more challenging applications that involve
rapid motion and low light.

Research in this area has shown that computer vision techniques based on event
data have achieved outstanding results, leading to a growing interest in this field.
However, one the main limitations of these methods is that they require a large
amount of event data for training, which is not available for mainly two rea-
sons: first, because these sensors have been recently introduced in the market
and secondly because they are rather expensive, making them not accessible to
everyone. The goal of this project is to design a learning-based solution that ad-
dresses this issue by converting any existing frame-based dataset recorded with
conventional cameras into synthetic event data. In this way, we can leverage
the enormous amount of video datasets to automatically generate events.
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Figure 1.1: General pipeline of the proposed method.

The asynchronous nature of events suggests the use of particular types of net-
works known as Spiking Neural Networks (SNN), bio-inspired sensors that pro-
cess information conveyed as temporal spikes rather than continuous numeric
values. The way events are generated whenever a a significant brightness change
is witnessed, recalls the dynamics of spiking neurons that produce spikes only
when their state (membrane potential) reaches a predefined threshold.

The general pipeline of the project can be summarized in the following steps:
starting from low resolution videos, Time Lens [13] frame interpolation tech-
nique is first deployed to generate high resolution videos which are directly fed
into the event generation network. The training process of the Spiking Neu-
ral Network is supervised by a spike loss relying on ground truth events. To
summarize, the main contributions are:

• We propose a learning-based solution to generate synthetic events starting
from video sequences.

• We show that the events generated with this method accurately reproduce
the corresponding real events in most of the cases, although being sensitive
to noise.

• We evaluate our method on an object classification task and show that
models trained on the synthetic events generated with the proposed net-
work perform better than Vid2E [4] in terms of accuracy.

1.1 Related Work

Prior work addressing the issue of scarce event data is already present in lit-
erature. The work done in [3] proposes a method to convert existing video
dataset to synthetic event data that relies on ESIM [11], an event camera simu-
lator which generates events using an adaptive sampling scheme. The adaptive
sampling scheme introduced by [11] is based on the maximum displacement
between frames and guarantees high accuracy when modeling fast motion and
lower computation in case of slow motion sequences.
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The way events are generated in these methods follows the Event Generation
Model, which can be summarized by the following

∆ log I (u, tk) = log I (u, tk)− log I (u,∆tk) ≥ pkC, (1.1)

where I (u, tk) represents the brightness at time tk of pixel u = (xk, yk)
T . The

work done in this project conceptually builds on top of [3], in fact the main steps
to achieve the goal are similar. What is different though, is the way events are
generated. This method substitutes the Event Generation Model with a Spiking
Neural Network, which is supervised on real events. The aim of the project is to
improve both accuracy and generalization capabilities of the previous methods.
The main limitation of these methods is represented by their dependency on
predefined values of the contrast threshold C, which does not allow them to
generalize on different types of datasets. Training an SNN would, in theory,
overcome this issue, in a way that events are not generated in a fixed way, but
they rather depend on the specific input we are providing to the network.

Using SNNs to process event data is an approach which is becoming increas-
ingly adopted in research. Several works have proposed to use SNNs to process
asynchronous event streams for computer vision application. An example is pre-
sented in [9], where the author integrates SNNs and ANNs for efficiently estimat-
ing optical flow from sparse event camera outputs. Recently, [5] has investigated
the use SNN to predict 3-DOF angular velocity of a rotating event-camera, per-
forming a temporal regression problem starting from event. However, the way
we seek to integrate events with SNNs in this work is slightly different from
previous methods: the events are not directly fed to the network but they are
used to supervise the training procedure via customized loss functions.
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Method

In this section we describe the main building blocks of the proposed method
for converting video to synthetic events. The process can be divided in two
main blocks: a data pre-processing stage followed by the training of a tailored
network for event generation. For the first part, we leverage a recent event-base
frame interpolation technique [13] to convert low frame rate to high frame rate
video. The upsampled datasets are then used to train a Spiking Neural Network
that learns how to generate events in an end-to-end fashion.

Before diving into the details of how events are generated, in Section 2.1 the
dynamical model of a spiking neuron is described. Understanding how informa-
tion is propagated across a Spiking Neural Network is of paramount importance
to understand how events are generated within the network.

2.1 Dynamics of a Spiking Neuron

In this section we present the dynamical model of a spiking neuron and how
it is integrated to our model. Spiking neurons differ from traditional neurons
mainly for the fact that they are not activated at each cycle, but they transmit
information only when their state is above a certain threshold. In general, these
neurons take spikes as both input and output, contributing to the neuron’s
internal state over time. In this work, we will follow the model defined by [12],
which uses a simple spiking neuron model known as the Spike Response Model
(SRM).

Given an input train of spikes defined as si (t) =
∑

f δ(t−t
(f)
i ), we first generate

a spike response signal ai(t) by convolving si(t) with the spike response kernel
ϵ(·). In a similar way, the refractory response of a neuron is modeled as (ν∗s)(t),
where ν(·) is the refractory kernel and s(t) is the neuron’s output spike train.
The spike response and the refractory response can be thought respectively as a
feed-forward and a feed-back term acting on each spiking neuron of the network.

Each spike response signal is then scaled by a synaptic weight wi, represent-
ing the learnable parameters of the SNN, generating a Post Synaptic Potential
(PSP). The contribution of each spike to the PSP, namely its magnitude and

4
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sign, is fully determined by the synaptic weight corresponding to the spike. The
neuron’s state, also referred to as membrane potential u(t), is simply the sum
of all post-synaptic potentials and refractory responses:

u (t) =
∑

wi(ϵ ∗ si)(t) + (ν ∗ s)(t) = wTa(t) + (ν ∗ s)(t), (2.1)

Output spikes are generated from the membrane potential, whenever the value
of u(t) overcomes a predefined threshold θ, defined as membrane threshold.
More formally, the spike function fs(·) is defined as

fs(u) : u → s, s(t) := s(t) + δ(t− tf+1), (2.2)

where tf+1 = min{t : u(t) = θ, t > tf}. In the moment immediately after a
spike is generated, the neuron tries to bring its membrane potential to the resting
potential value, so that the spiking activity is regulated. This self-suppression
mechanism is called refractory response. A schematic representation of this
whole mechanism is shown in Fig. 2.1.

Figure 2.1: Schematic representation of the dynamics of a spiking neuron.

The way input video frames are integrated in this model is rather simple: in-
stead of feeding each video sequence to the spike response kernel, as we would
normally do with asynchronous spikes, we assume that the input frames con-
stitute the membrane potential of the very first layer of the network. This
assumption holds because the video datasets have been upsampled to a high
resolution, so they represent a valid approximation of a continuous signal. In
this way, the spike function acts directly on the input frames and events are gen-
erated. Nevertheless, the synaptic weights still play a fundamental role, since
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they represent the parameters regulating the learning process and they scale the
frames’ intensities before being thresholded.

2.2 Data pre-processing

The supervised learning nature of the proposed method requires pre-processing
on two different levels: on one hand we need to take care of upsampling the input
video datasets fed to the network during training, and on the other we need the
ground truth events deployed for supervision to be correctly represented.

In general, training neural networks requires a huge amount of data to guarantee
that meaningful patterns are learned during the process. In addition to this,
the data provided should contain as many different scenes as possible, so that
we avoid overfitting to specific types of sequences. In this work, we propose
two different datasets to train the network, the HS-ERGB dataset [13] and the
Vimeo90k-denoising dataset [14].

2.2.1 Dataset upsampling

The upsampling step of the input data frames represents a core aspect of the
event generation process, as it may affect the final quality of the generated
events. Differently from [3], in which frames were upsampled using Super SloMo
video interpolation method [7], the method proposed in this work relies on
Time Lens [13], a novel event-based frame interpolation method that brings
together the advantages of synthesis-based and flow-based approaches. While
Super SloMo leverages bi-directional optical flow between adjacent frames to
warp them at specific timestamps to generate the intermediate images, Time
Lens estimates motion from events, rather than frames and thus has several ad-
vantages: it is more robust to motion blur and can estimate non-linear motion
between frames. Time Lens is deployed to upsample the input video sequences
up to 1000 FPS. In this way, we assume that consecutive frames in every se-
quence have 1ms difference in time, which simplifies the whole set-up.

High Speed Events-RGB (HS-ERGB) dataset combines together high-
resolution events with RGB images. The hybrid camera setup to record this
dataset features a Prophesee Gen4 event camera and a FLIR BlackFly S global
shutter RGB camera. The dataset is recorded in a variety of conditions, both
indoors and outdoors. The exposure time used to record the sequences is as low
as 100µs for outdoor scenes and up to 1000µs for indoor scenes. The dataset
features frame rates of 160 FPS and includes highly dynamic close scenes with
nonlinear motions and far-away scenes featuring mainly camera ego-motion.

Vimeo-90k is a large-scale, high-quality video dataset for low-level video pro-
cessing. The Vimeo-90k-denoising dataset that we use to train the network is
a sub-section of the septuplet dataset, consisting of 91.701 7-frame sequences
with fixed resolution 448 × 256, extracted from 39K selected video clips from
Vimeo-90K. This dataset is designed to video denoising, deblocking, and super-
resolution. To address video denoising, two types of noises are considered: a
Gaussian noise with a standard deviation of 0.1, and mixed noises including a
10% salt-and pepper noise in addition to the Gaussian noise. Since this dataset
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Figure 2.2: Sample sequences from the HS-ERGB dataset.

contains only video frames, the ground truth events used for supervision while
training on this dataset are synthetic events generated with Vid2E [3].

Figure 2.3: Sample sequences from the Vimeo-90k dataset.

2.2.2 Event representation

The way events are represented is a fundamental step when dealing with event-
based computer vision methods. An event is formally described as a tuple
(x, y, t, p), where x and y are the location of the pixel from which the event
was triggered at time t. The polarity p is a binary variable that indicates
whether the change in brightness is either positive or negative. In general, events
are aggregated in grid-based representations, allowing them to be processed by
traditional neural network models.

The work done in [4] specifically addresses the issue of converting asynchronous
event-based data into grid-based representations. Their contribution consists in
expressing the conversion process through kernel convolutions, quantizations,
and projections, where each operation is differentiable.

In this work, events are expressed as tensors of size [2,W,H, T ], where W and
H refer to the width and height of the corresponding video frames from which
they are generated and T being the temporal dimension of the sequence, i.e. the
number of frames. In this way, for a given timestamp value, each pixel location
of the event tensor is associated to two values accounting for the negative and
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positive polarity of the corresponding event. To obtain such representation, a
discretization step is performed in which every stream of events is distributed
into T equally-sized bins along the temporal dimension.

Figure 2.4: Event Spike Tensor representation of a stream of events.

2.3 Network architecture

In this section we present Spike-ESIM, a novel Spiking Neural Network for
event generation from video frames. The proposed network is different from
traditional Spiking Neural Networks in the way that it does not take as input
trains of asynchronous spikes, but rather sequences of upsampled video frames
which are fed directly at the level of the membrane potential of the first layer.
In this way, we skip the Post Synaptic Potential layer at the initial stage of
the network, which normally convolves the input spikes of each node with the
temporal ϵ(·) kernel to generate the potentials.

The network is a branched architecture, with each branch modeling a specific
polarity of the output event tensor. Modeling the event generation process with
a single network would not be feasible, since we need to account for both positive
and negative changes of brightness along the frames. Another important aspect
is that the two branches should not have shared parameters during the training.
A Siamese-like architecture, for example, where the weights of the branches are
shared and trained concurrently, would not be accurate because positive and
negative events need to be modeled separately, as they are subject to different
contrast thresholds C in the real-world case.

The way the input video frames are fed into the network is the following: starting
from a sequence of T consecutive frames, we compute both the positive and
negative difference of the intensities along adjacent frames, namely ∆I(t) and
−∆I(t), and we feed them into the two separate branches. Each branch is
composed of a 3D convolution layer followed by a spike function module, this
latter being the one that actually generates events by thresholding the scaled
differences of brightness according to the membrane potential hyper-parameter.
Each convolution block is a 3D convolution with 3 × 3 kernel size, padding
of size 1, 3 input channels corresponding to the RGB channels of the input
video frames and 1 output channel corresponding to the generated events of the
specific polarity. The final output of the network is computed by concatenating
along the channel dimension the two feature maps formed at the end of each
branch.
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Figure 2.5: Schematic representation of the Spike-ESIM architecture.

2.4 Training Procedure

In this section we discuss the main blocks needed to setup a training with the
proposed network and all the details related to it. The training of our SNN is
done with the publicly available 1 PyTorch implementation of SLAYER [12].

2.4.1 Backpropagation in Spiking Neural Networks

The main drawback of training Spiking Neural Networks is that the derivative
of the spike function is not defined, being this function non-differentiable, which
is a major concern when it comes to backpropagate the error from output to
input during training. Prior work addressing this issue can be split in two
main approaches: a first approach overcomes this problem by introducing an
ANN that trains an equivalent shadow network, while a second approach is
more oriented to finding functions that approximate the derivative of the spike
function.

The SLAYER model [12] addresses this problem by defining the derivative of the
spike function as a Probability Density Function (PDF) modeling the change of
state of a spiking neuron. This PDF is represented by an exponentially decaying
function of the random variable u(t)− θ in the form

ρ(t) =
1

α
exp (−β|u(t)− θ|) . (2.3)

This probability function ρ(t) = ρ(u(t) − θ) assumes high values when u(t) is
close to θ and it decreases the further the membrane potential u(t) is far away
from the membrane threshold.

2.4.2 Loss function

The loss function L used during the training is defined as the time-integral over
a period T , this latter representing the temporal dimension of each sequence fed

1https://github.com/bamsumit/slayerPytorch

https://github.com/bamsumit/slayerPytorch
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into the network, in the form

L =

∫ T

0

l(s(nl)(t), ŝ(t))dt =
1

2

∫ T

0

(
e(nl)(s(nl)(t), ŝ(t))

)2

dt, (2.4)

where ŝ(t) is the ground truth event tensor, s(nl)(t) is the output of the network,
l(s(nl)(t), ŝ(t)) is the loss at time t and e(nl)(s(nl)(t), ŝ(t)) is the error signal at
the final layer nl. As suggested in [12], to learn a target spike train ŝ(t), in this
case the ground truth events, is convenient to choose the error signal in the form

e(nl)(t) = ϵ ∗
(
s(nl)(t)− ŝ(t)

)
= a(nl)(t)− â(t), (2.5)

which computes the loss as an element-wise difference between the generated
event tensor and the ground truth events, convoluted with the response kernel.

2.4.3 Experimental setup

The CUDA accelerated deep learning framework implemented by [12] is used
to perform the training of the SNN. In our experiments, we use spike response
kernels in the form ϵ(t) = t/τs exp (1− t/τs)Θ(t) and a refractory response
kernel in the form ν(t) = −2θ exp (1− t/τr)Θ(t), with τs = 10 and τr = 1.

Figure 2.6: Graphical representation of the proposed: (a) spike response kernel
(b) refractory kernel.

The optimizer chosen for the training is ADAM [8] with a learning rate of 0.01.
Extremely important is the choice of the membrane threshold θ of the SNN,
since it significantly affects the performance of the results. A too high threshold
results in overlooking some events in the scene, while a too small threshold takes
in a lot of details which cannot be properly classified as events. Different values
of the membrane threshold were tested: 0.2, 0.7, 1, 2, 3, 5. The best observed
value for the Vimeo-90k-denoising is 0.7, while for the HS-ERGB dataset is 1.5.

Training on the Vimeo-90k-denoising dataset is performed considering the full
resolution (448× 256) of the upsampled input sequences. Every sequence of the
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upsampled Vimeo-90k-dataset contains 205 frames. As far as the HS-ERGB
dataset is concerned, central 300 × 300 cropping is performed to the input se-
quences to reduce the computational burden and to conform to a unified spatial
dimension during the training procedure. One of issues encountered during the
training on the HS-ERGB dataset concerns the fact that some sequences are ex-
tremely long after the upsampling step and therefore unfeasible to be processed
all at once. To address this problem, a recurrent implementation of the SNN
modules is proposed, which allows to sub-divide every sequence into chunks of
1000 frames each, and to process every chunk sequentially. While processing the
different chunks of a sequence, we keep track of the results of the previous stages.
In this way we overcome the computational burden of processing extremely long
sequences all at once, which is nonetheless unfeasible due to memory and GPU
limitations.



Chapter 3

Experiments

In this chapter we provide experimental results to validate the effectiveness of
the proposed method. First, a more qualitative evaluation is performed by
visually comparing the generated events to the ground truth events. Then, we
move on to analyze the event rates of specific sequences to monitor how the
number of spikes changes over time. Finally, we validate the performance on a
object classification task, by training a classifier on events generated with the
Spike-ESIM network.

3.1 Visual inspection

Visualizing the generated events reveals a strong dependency of the method
on background noise present in most of the scenes of the HS-ERGB dataset.
The amount of noise that is modeled in the scene is strongly dependent on
the membrane threshold that we set before training, and its value is extremely
important as it strikes a balance between how much noise we allow in the results
and how well we want to model the real events.

However, if we ignore the noisy spikes in the background and we focus only on
the meaningful visual appearances resulting from the dynamics of the scene, it is
possible to observe that the way events are generated is substantially accurate.
In Figure 3.1 we show two sequences from the HS-ERGB dataset and present
the result of the events generated with Spike-ESIM trained on the real events.

In Figure 3.2, instead, we present the result of training the Spike-ESIM network
on the Vimeo-90k-denoising dataset. The sequence shown is taken from the
Caltech101 dataset [2]. It is possible to observe that the events generated with
the network are almost identical to the real ones.

3.2 Event rates

To evaluate the quality of the generated events from a more quantitative per-
spective, we focus our attention on the event rates. Comparing how the number

12
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Figure 3.1: A side-by-side comparison of samples from HS-ERGB dataset (a)
Input frames (b) Synthetic events generated with Spike-ESIM trained on HS-
ERGB (c) Real events.

Figure 3.2: A side-by-side comparison of a sample from Caltech101 dataset (a)
Input frame (b) Synthetic events generated with Spike-ESIM trained on Vimeo-
90k-denoising (c) Synthetic events generated with Vid2E.

of spikes changes over time in both the synthetic and real events can be a rea-
sonable approach to validate the results and to spot potential inaccuracies.

The results of Figure 3.3 show the total event rate of the events generated
with Spike-ESIM trained on the HS-ERGB dataset. The sequence taken as
reference for the following comparisons is the baloon sequence from the HS-
ERGB dataset. As one could expect from the results already observed in Section
3.1, the modeled noise causes the event rate to have significant fluctuations
because the total number of spikes takes into account also all those spikes related
to noise. For a more clear evaluation, a filtering step is performed on the
generated events to filter out the noisy spikes. A 5×5 median filter was applied
to the resulting event tensor.

In Figure 3.4 we compare the event rate of the events generated with Vid2E, the
ones generated with spike-ESIM trained on HS-ERGB and the real events. For



14 3.2. Event rates

each case, two separate signals are displayed to account for both positive and
negative event rates. From the comparison, it is possible to observe that both
events generated with Vid2E and spike-ESIM present a flickering behaviour.
However, while the events generated with Vid2E tend to overestimate the overall
number of spikes by almost double the value of the real events, the method
proposed in this work slightly underestimate the real events, although a high
level of realism is achieved by capturing most of the visual appearances of the
real event stream.

An additional inspection is performed more locally, by taking into account 8×8
patches randomly sampled in the event tensor. Even though the event rate of the
generated events does not match perfectly the real events spikes, it still provides
a trustworthy reconstruction also locally. From the results of Figure 3.5, we can
observe that the two signals are temporally consistent, with no delay introduced
in the event generating process, and that their shapes are rather similar.

Figure 3.3: A side-by-side comparison of the total number of spikes from the
baloon sequence of the HS-ERGB dataset, using Spike-ESIM trained on HS-
ERGB (a) Total event rate from unfiltered generated events (b) Total event
rate after a 5× 5 median filtering of the generated events.

3.2.1 Temporal smoothing network

To address the flickering behaviour of the generated events, a new architecture of
the network is introduced, performing a temporal smoothing of the events along
the positive and negative channels separately. The resulting network, which we
called Temporal Smoothing Spike-ESIM, adds a PSP layer and an additional
spike function module in each branch of the standard Spike-ESIM network.

Results presented in Figure 3.7 show that the event rate signal resulting from
the events generated with this novel network is way smoother than the standard
case. In addition to that, it can be observed that the smoothing procedure
introduces some delay in the generated events, as the signal is shifted to the
right along the temporal dimension by a certain amount. However, from a
visual inspection of the generated events with this network shows that we loose
some accuracy in modeling the real events.

Although this direction was not further investigated due to lack of time, it could
be an interesting starting point for future work to address this problem.
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Figure 3.4: Comparison between different methods on the positive and negative
event rate from the baloon sequence of the HS-ERGB dataset (a) Positive and
negative event rate of events generated with Vid2E (b) Positive and negative
event rate of events generated with Spike-ESIM trained on HS-ERGB dataset
(c) Positive and negative event rate of real events from the HS-ERGB dataset.

3.3 Classification on N-Caltech101

To further investigate the validity of the generated events with respect to other
methods, we validate the results on a classification task. We generate synthetic
events from the video sequences of the Caltech101 [2], thus creating a simulated
replica of the N-Caltech101 dataset [10] (Neuromorphic-Caltech101). We then
want to quantify how well a network trained on the simulated N-Caltech101
generalizes to events in the real dataset, NCaltech101. Two versions of the
simulated N-Caltech101 dataset are generated, one with an SNN trained on
the HS-ERGB dataset and one with an SNN trained on Vimeo-90k-denoising.
For the sake of conciseness, we use the abbreviations Spike-ESIM-HSergb and
Spike-ESIM-Vimeo to refer to these two networks.

Once these new datasets have been generated, a classifier is trained on top of
them separately. The classifier is composed of a Quantization network that first
converts the input stream of events into a voxel grid representation, followed
by a ResNet-34 [6], which has been pretrained on RGB images from ImageNet
[1]. The training is performed choosing a batch size of 4, a learning rate of
10−6 and 30 epochs, which are sufficient for the network to converge. The
test score is computed on the whole N-Caltech101 dataset, which has been
collapsed into one large set, and no more divided into training, validation and
test sets. As a baseline we compare the results against a network which was
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Figure 3.5: Local comparison of a 8 × 8 patch randomly sampled from the
baloon sequence of the HS-ERGB dataset on the total event rate between events
generated with Spike-ESIM trained on HS-ERGB (up) and ground truth events
(down).

trained on synthetic events generated with Vid2E [?] and evaluated on the same
sequences of the N-Caltech101. From the training results we can observe that
the network trained on synthetic events generated with Spike-ESIM-Vimeo with
a membrane threshold of 0.7 leads to a higher score (76.2%) with respect to the
baseline (75.1%) resulting in an increase of 1.1% in the performance. On the
other hand the network trained on synthetic events generated with Spike-ESIM-
HSergb leads to a significant decrease in the test score, dropping to 71.5% when
using a membrane threshold of 1.5, 70.5% with a threshold of 0.7 and 68.3%
with a threshold of 3. The main reasons why this happens might be the fact
that the Spike-ESIM-HSergb network has been trained on a significantly noisy
dataset and this may affect the overall performance. The same does not apply
for the Vimeo-90k-denoising dataset, which has similar characteristics to the
Caltech101 dataset, i.e. low background noise and linear motions in the scene.

Method Membrane threshold test score

Spike-ESIM-Vimeo 0.7 0.762
Vid2E ✗ 0.751

Spike-ESIM-HSergb 1 0.715
Spike-ESIM-HSergb 0.7 0.705
Spike-ESIM-HSergb 3 0.683

Table 3.1: Comparison of classification accuracy on N-Caltech101 using different
synthetic datasets for the training and different membrane threshold values.
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Figure 3.6: Architecture of the temporal smoothing Spike-ESIM network.

Figure 3.7: Effects of the temporal smoothing network on the anchor sequence
from the Caltech101 dataset (a) Total event rate of events generated with the
temporal smoothing network trained on the Vimeo-90k-denoising dataset, (b)
Total event rate of events generated with Spike-ESIM trained on the Vimeo-
90k-denoising dataset, (c) Total event rate from ground truth events.



Chapter 4

Discussion

In this chapter we discuss the main achievements of this work, as well as the
limitations that were encountered during the process. This work offers a simple,
yet effective solution to the problem of lacking event data for computer vision
applications, proposing a method for converting video datasets into synthetic
event datasets. Although the proposed method achieves better results with
respect to previous related methods, there are still numerous limitations that
need to be addressed to possibly improve the performance of the model.

4.1 Future Work

Future points of work should focus on the main limitations of the proposed
method. First of all, further pre-processing of the input data should be done
to reduce the dependency of the method from noise. As the vast majority of
datasets are inevitably filled with noise, this represents a crucial step to be
undertaken, as we have seen that it significantly affects the performance of
the results. Filtering techniques must be deployed prior to the training of the
network.

The current implementation of the network is restricted to a small number of
trainable parameters during the training process, as we are using single 3 ×
3 3D convolutions for each branch of the network, resulting in a total of 27
parameters per branch. Future work could go in the direction of exploring deeper
architectures of the event generation network with more trainable parameters,
and possibly integrating with skip-connections.

Moreover, one could test the effect of different loss functions on the training
process. One of the main aspects of the events generated with Spike-ESIM is
that they generally tend to underestimate the actual number of spikes of the
real events. One could design customized loss function to be integrated with
the current one, to constraint the learning process directly on the number of
generated spikes per sequence.

The results of the classification task on the N-Caltech101 dataset have shown
that training on real events does not generalize well on synthetic datasets. To

18
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address this issue, another possible direction that can be developed in future
work is to bridge this gap between different datasets to provide a more general-
izable setup of the method. An ideal setup would be the following: depending
on the dataset we may need to use, one could adjust at test time some hyper-
parameters that account for these differences.

Finally, to have a better understanding about the validity of the results, one
may want to validate the proposed method also on other computer vision tasks,
i.e. semantic segmentation, to investigate further advantages or limitations of
this work.

4.2 Conclusion

Scarce resources of event data is still one of the major limiting factor of event-
based computer vision applications. Prior work has already moved in the direc-
tion of leveraging the massive amount of video datasets collected over the years
to generate synthetic events, already achieving outstanding results.

We have presented a learning-based solution to generate events from frame-
based datasets relying on Spiking Neural Networks. From a visual evaluation
of the results, we can say that the synthetic events generated with our method
effectively capture most of the visual details of the real event stream and thus
they achieve a high level of realism. Furthermore, we highlight the improved
performance of the object classification task trained on events generated with
this method with respect to previous methods.

There remain many limitations of our work. The proposed method is extremely
sensitive to noise in the input video frames and it still lacks of robust gener-
alization capabilities across different types of datasets, limiting its application
window to specific cases.

Nevertheless, this project lays the ground work for future research into this
direction. It also serves to demonstrate the potential of these exciting and
potentially fruitful research avenues for the research community at large.



20 4.2. Conclusion



Bibliography

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[2] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories. Computer Vision and Pattern Recognition
Workshop, 2004.

[3] Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scara-
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