
Project 3: 3D Object Detection from Lidar Point Clouds

Deep Learning for Autonomous Driving
Team ID 18

Ivan Alberico, Nicola Loi
May 17, 2021 - July 2, 2021

Problem 2 - Taking Matters Into Your Own Hands

Abstract
The network exploited in Problem 1 performs acceptable mAP scores, even for the hard difficulty,
but it still remains a baseline network with a simple structure. It does not exploit several simple
additional approaches that could increase its performance. Here we will evaluate some modifications
and/or additions to the baseline network, to find which methods are able to enhance its car detection
capability. At the end, our final network exploits a change in the reference frame of the pooled
points, an additional distance feature, and data augmentation approaches. The final network has a
noticeable increase in the mAP scores with respect to the baseline method, decreeing the success of
the improvements.

Introduction
The greater shortcoming of the baseline network is the different magnitude of the values of the point
coordinates. Since not only the extracted local features but also the absolute point coordinates are
fed to the Pointnet++ network backbone, the network is not invariant to the absolute position of
the points. The goal of the second stage of the network is not to localize a car in the scene, but to
classify as car or non-car the given RoI of the point cloud: it only receives as input small individual
sections of the point cloud. From the points within these individual RoI, the network has to classify
them and regress a bounding box around them. Since the regression and classification of the region
of interest are not linked to the absolute position of the points but only to their relative position
within the RoI, the network could be improved to be robust and invariant to the absolute position
of the pooled points.
Apart for this specific modification, the other experiments performed were more general. We started
the testing trying a new classification loss, to see if the background/foreground proposal ratio could
be better exploited, and a new regression loss, to try input for the L1-Smooth loss different from the
basic difference between the predicted and the ground truth box parameters. Finally, multiple data
augmentation approaches are exploited, to increase the variety of the training set so the network
could be trained with more different samples and be more robust against car variations.

Method
First, two different losses are evaluated, to find out if the baseline network will experiences an initial
improvement with a different loss. For the classification loss, we tried the focal loss [1][2], which is
a useful implementation when the background/foreground samples ratio is very high. Its best use
should be in the first stage, not the second stage of the network where we already perform a sampling
to avoid an high background/foreground ratio, but we preferred to test it anyway to evaluate it. It

1

was implemented on top of the BCE loss already computed in Problem 1, by premultiplying it with
a factor depending on the confidence score of the predictions, which changes according to the class
we are taking into account, as in the following:

Lfocal (xt,y) = −αt (1 −xt)γ logxt = −αt (1 −xt)γBCE(x,y) (1)

where xt =
{

x if y = 1
1 − x if y = 0

Instead, for the regression loss we tried the implementation shown in [4], where the rotation loss
stays the same, but in the location loss the errors in the predictions are normalized by the predicted
dimension of the box, and in the size loss the logarithm of the proportion between the prediction and
the ground truth is used instead of their difference, as in the following way:

Llocation = smoothL1[(∆x,∆y,∆z) ,(0,0,0)] (2)

Lsize = smoothL1[(∆h,∆w,∆l) ,(0,0,0)] (3)

Lrotation = smoothL1[∆θ, 0] (4)

where ∆x = xtarget−xpred

diag , ∆y = ytarget−ypred

diag , ∆z = ztarget−zpred

hpred
, diag =

√
l2pred+w2

pred ;

∆l = log(ltarget

lpred
), ∆w = log(wtarget

wpred
), ∆h = log(htarget

hpred
); ∆θ = θtarget−θpred.

To make the network invariant to the absolute position of the pooled points, every RoI must be
transformed to a different reference frame before feeding it to the network, so that the previous
original position of the points lose importance with respect to their relative position. This is achieved
with a canonical transformation, i.e. translating and rotating the pooled points to the frame whose
origin is the center of the proposal and whose axes are aligned with the box edges, as suggested in [3].
Following the paper, we also added the distance to the origin in the original frame (di =

√
x2

i + y2
i + z2

i)
as a feature for the points, to retain the information about the point distance to the LiDAR, since
the density and the number of points in each proposal decrease with the distance. The distance
is normalized dividing it by 85, which is the maximum distance of a proposal. This method is
implemented in the roi pool() function, where the points are already transformed to check if they are
within the enlarged box. Before, these new coordinates were only used for the checking, but now
they are also used as the coordinates of the pooled points.

The data augmentation is performed in two main ways. The x,y,z coordinates of the points of each
pooled RoI are individually randomly scaled by a factor uniformly distributed in the range [0.9, 1.1].
In other words, each pooled RoI is not scaled by a unique factor in all directions, but each direction
is scaled by its own factor, to be even more robust against cars with mixed proportions. The second
augmentation method is to randomly flip with a 50% chance the pooled RoI in the canonical frame
around the x-axis, i.e. inverting the z coordinate of each point, to exchange the right side of the
car with the left side. In addition, each each point is separately disturbed by a random uniformly
distributed noise in the range [-0.01, 0.01] m. Each point coordinates are individually disturbed, to
simulate the noise of the LiDAR sensor in a very simple formulation. With respect to the scaling and
the flipping augmentation approaches this method is of secondary importance, nonetheless it could
help the network in being more robust against the slight position fluctuations of the points due to the
noise of the sensor. The second stage network takes as input not only the coordinates of the points
coordinates but also their features; since the data augmentation is changing the relative positions of
the points, it could create contrasts with the information delivered by the features, since they were
extracted in the first stage from the original point coordinates.

2

Results
The mAP scores of the baseline network on the validation set are easy: 80.93, medium: 74.68, hard:
74.04, while on the test set are easy: 79.167, medium: 72.43, hard: 71.34. All the experiments
performed are evaluated on the validation set; only for the final network the mAP scores will be
evaluated also on the test set.

The two different losses evaluated did not bring any improvements to the final performance of the
network. With the focal classification loss, the final mAP scores are easy: 75.60, medium: 71.48,
hard: 69.54, worsening the results by a few points, especially for the easy mAP. As thought, having
already made a background/foreground sampling, the focal loss has not given added value to the
training. The training with the modified regression loss was instead very unstable, due to the divisions
present, even tough was added an epsilon of 0.01 to the denominators to avoid possible division by
zero. Each of the seven component of the loss was clamped to a max value of 4 to be more stable,
but since in the first epochs the loss was not decreasing and the mAP scores were in the order of
1e-3, hence practically zero, the training was aborted and decreed a failure.

(a) (b)

Figure 1: Comparison of the losses of the network between the baseline and after implementing the canonical transformation:
(a) training loss, (b) validation loss.

(a) (b) (c)

Figure 2: Comparison of the mAP scores between the baseline and after adding the canonical transformation: (a) easy, (b)
medium, (c) hard.

The canonical transformation, instead, goes in a different direction, since it does not affect how the
loss is computed but it applies directly on the points. Introducing the canonical transformation into
the pipeline increasingly boosted the performance of the network, achieving high mAP scores in a
shorter amount of time. In fact, already after a few epochs, the mAP scores achieved by the network
on the validation set were way higher than those from Problem 1 after the whole training of 35 epochs.
The mAP scores obtained after 10 epochs are easy: 93.877, medium: 88.595, hard: 87.453. Since
no improvements were recorded afterwards and the validation loss was stopping decreasing, we can

3

consider the network trained after just 10 epochs, with very high results (Figure 1 and Figure 2).
Since the validation loss and the mAP scores were shortly saturated and the training loss witnessed
a very fast decreasing at the beginning with a slow decreasing afterwards, it could seem that the
network was learning too fast. It is then tested a diminishing of the learning rate, from the original
0.004 (4e-3) to 0.0008 (8e-4), i.e. 1/5 of the original. Even tough the mAP scores, the validation and
the training loss have now a more smooth increasing/decreasing, their final values are practically the
same as for the original learning rate. Since there were no immediate visible improvements, we kept
the original learning rate.

As the canonical transformation significantly contributed to improving the results, all the following
changes in the network were tested on top of that. We tried adding the point distances to the features
in order to include also some depth information while supervising the training. But it did not bring
substantial changes, reaching the following mAP scores after 10 epochs: easy: 94.645, medium:
88.799, hard: 87.589.

One of the last modification that was tested was introducing data augmentation while training the
network. Introducing data augmentation did not bring improvements of the network, even though
the results were somehow comparable to those obtained including the distance in the features. In
fact, the obtained mAP scores on the validation set are easy: 94.63, medium: 88.26, hard: 87.28.

Even though the additional distance feature and the data augmentation did not improve the scores
of the network, we decided to keep them in the pipeline, because they don’t worsen it anyway and
the training time is unchanged. Having them could benefit the detections in certain situations and
scenes, even though in the current validation set it was not observed any improvement. The mAP
score on the test set for the final network with the canonical transformation, the distance feature
and the data augmentation after 10 epochs are easy: 93.48, medium: 88.66, hard: 88.21. The final
training time is 2 hours and 10 minutes, while the training time of the baseline was 6 hours and 25
minutes (both times include validation at each epoch)

Discussion
Without the shadow of a doubt, the major contribution of the results that have been achieved comes
from applying the canonical transformation to the pooled points of each bounding box proposal of
the first stage. In general, the reason why the canonical transformation helps obtaining better results
is that it eliminates variations among different 3D proposals in terms of position and orientation in
the scene. Even though the network with the distance feature and the data augmentation performed
similarly, it is chosen to keep these additions. Data augmentation represents a regularization technique
and, in general, it is advisable to use it, since it attempts to make the network less prone to overfit.
Moreover, it is very simple and efficient to implement, and also it makes the network more robust to
variations in the input. Also the distance feature is a very fast yet efficient modification that integrates
depth information in the training process, by putting together additional local spatial features to the
global features previously computed by the first stage. Finally, our network not only outperformed
the baseline but it needs only one third of the time to train, another astonishing improvement.

On the other hand, the modifications made on the loss were not as successful as the ones just discussed.
Both the focal loss and the modified regression loss from VoxelNet [4] did not bring any enhancement
to the network, or rather, they performed even worse or made the whole process unstable.

Given the hardware problems encountered, it was not practicable to test other possible improvements
and/or to better test our improvements. Many other network modifications should be experimented
in future works. For instance, remodelling of the PointNet++ layers and of the final classification
and regression branches, testing different number of layers and channels. The PointNet++ backbone
network could also be completely abandoned in favor of other models.

4

References
[1] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal loss for dense object detection.

CoRR, abs/1708.02002, 2017. URL http://arxiv.org/abs/1708.02002.

[2] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object proposal generation and detection from point
cloud. CoRR, abs/1812.04244, 2018. URL http://arxiv.org/abs/1812.04244.

[3] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. PV-RCNN: point-
voxel feature set abstraction for 3d object detection. CoRR, abs/1912.13192, 2019. URL
http://arxiv.org/abs/1912.13192.

[4] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
CoRR, abs/1711.06396, 2017. URL http://arxiv.org/abs/1711.06396.

5

