
Project 2: Multi-task Learning for Semantics and Depth

Deep Learning for Autonomous Driving
Team ID 18

Ivan Alberico, Nicola Loi
March 26, 2021 - May 20, 2021

In this project a Multi-Task Learning (MTL) architecture is constructed and improved step by
step, with the goal of enhancing the semantic segmentation and monocular depth estimation of the
model. To evaluate the performance, the metrics used are the IoU (Intersection over Union) for
the semantic segmentation (semseg), for which higher values indicate a better performance, and
the SI-logRMSE for the depth estimation (depth), for which, instead, lower values are preferred.
These two metrics are then combined in the total metric, for which higher values are better. These
metrics are evaluated on a validation set, and all the choices made during the project to obtain
better models are based on their scores. In addition to this, the results of the metrics computed
on the test set, which will henceforth be called grader, will also be shown, but only for the best
model of each subsection.

In order to better visualize how the network’s performance improved with the different modi-
fications, the prediction images generated by the best-performing model of each subsection are
exhibited in the Appendix in Table 13.

To distinguish the multiple architectures that have been tested, they have been labelled with a
unique tag. When the metrics achieved by a particular model is displayed in a table or whenever
the model is simply mentioned in the text, it is cited using the abbreviation of its tag. Table 14 in
the Appendix is provided to link each abbreviation to the corresponding complete model name.

Problem 1 - Joint architecture

1.1 Hyper-parameter tuning
For the first part of the problem, the goal is to tune some hyper-parameters of the network to
achieve the best possible validation result. Many approaches exist to perform an automatized
hyper-parameter tuning, and the Keras Tuner library offers a good starting point [1]. However, in
this project it is required to manually tune the hyper-parameters, searching and choosing the best
ones comparing the results of multiple training runs. This heuristic approach is not an optimal
method to find the best hyper-parameters, however it could be a convenient way to find satisfactory
hyper-parameters that, even if sub-optimal, can enhance the performance of the network.

a) The optimizer and LR choice
The first hyper-parameter to be optimized is the learning rate η, together with the choice of
using the Stochastic Gradient Descent (SGD) or the Adam optimizer. The learning rate is one
of the most important hyper-parameters: a small value executes at each step of the training a
small update in the weights of the network, slowing down the convergence and probably getting
stuck in a local minimum; a big value performs larger updates of the weights at each training
step, and could help in getting out of a local minimum, but a large step could also outdistance
an optimal minimum, and could continuously bounce back and forth. To overcome this issue,
a decay of the learning rate is exploited.

1



The default network employs a SGD optimizer with η= 0.01 (1e-2). A sample training run with
this configuration (original 37628) provides a sample result for the evaluation metrics: total:
39.83, semseg: 67.194, depth: 27.357. At the beginning, some preliminary test runs are
carried out for each optimizer, changing logarithmically η to assess a generic hyper-parameter
value that gives satisfactory results. From it, a more specific search is performed with the
best optimizer, tuning η within a small range to refine the best learning rate value of the best
optimizer.
Starting from the SGD optimizer of the original network, η values of 0.0001, 0.001, and 0.1
(1e-4, 1e-3, and 1e-1) are tested, with the results shown in Table 1. The run P1.1a 06c0d with
η = 0.1 has the best results in all the metrics, beating also the default setting, which by the
way is the second best result for the SGD optimizer.

SGD optimizer

Run name learning rate Metrics

total ↑ semseg ↑ depth ↓

P1.1a 1f725 0.0001 -15.225 25.654 40.879

P1.1a 61964 0.001 22.144 55.079 32.935

original 37628 0.01 39.837 67.194 27.357

P1.1a 06c0d 0.1 42.740 69.885 27.145

Table 1: Results of the tested runs with the SGD optimizer for the tuning of the learning rate.

It is then evaluated the performance of the Adam optimizer, which should have a default learning
rate of a couple of magnitude smaller than SGD. Therefore, in these preliminary tests η values
of 0.00001, 0.0001, 0.001, and 0.01 (1e-5, 1e-4, 1e-3, and 1e-2) are tried out. The results are
displayed in Table 2. The run P1.1a d68b6 with η = 0.0001 (1e-4) has the top results in all
metrics, and since it beats also the best results achieved with SGD, it is used as a reference to
refine the learning rate hyper-parameter.

Adam optimizer

Run name learning rate Metrics

total ↑ semseg ↑ depth ↓

P1.1a 47e22 0.00001 24.313 56.433 32.121

P1.1a d68b6 0.0001 43.482 69.925 26.443

P1.1a 27e27 0.001 38.429 66.269 27.840

P1.1a 4d200 0.01 5.362 41.835 36.472

Table 2: Results of the tested runs with the Adam optimizer for the tuning of the learning rate.

The Adam optimizer is investigated more in depth with η values that deviate from the 0.0001
(1e-4) reference, but remaining inside the range 0.001-0.00001 (1e-3 - 1e-5). The complete results
of these tests can be seen in Table 3. Since the evaluation metrics are getting worse even with
small deviations (η = 0.00007 (7e-5) and 0.0002 (2e-4)) from the reference learning rate, it is
concluded that as far as allowed by this heuristic search, the best results are achieved with
the model P1.1a d68b6, which has the Adam optimizer with a learning rate of 0.0001 (1e-4),
and whose metrics results are total: 43.482, semseg: 69.925, depth: 26.443. The grader
scores are total: 43.298, semseg: 69.889, depth: 26.591.

refining Adam optimizer

Run name learning rate Metrics

total ↑ semseg ↑ depth ↓

P1.1a d10d0 0.00002 33.525 63.039 29.513

P1.1a 237dc 0.00007 42.526 69.292 26.766

P1.1a d68b6 0.0001 43.482 69.925 26.443

P1.1a 81237 0.0002 43.019 69.625 26.605

P1.1a 10da7 0.0004 42.024 68.886 26.862

Table 3: Results of the tested runs with the Adam optimizer for refining the tuning of the learning rate.

2



As introduced at the beginning of this subsection, the advantages and disadvantages of small/big
learning rate values must be tuned; it does not exist a universal best value for every situation.
The chosen learning rate and optimizer represent the optimal choices for this network and its
tasks, taking into consideration, however, the limitation of the heuristic research carried out.

b) The batch size
The next hyper-parameter to be tuned is the batch size used during the training. A big batch
size is slow to compute, but gives a better approximation of the true gradient, and so the
correct direction to follow to update the weights. A small batch size is faster to compute,
but the corresponding computed gradient is more noisy, and so the direction followed by the
network for the weights update is less optimal, causing a slower convergence.
By default, the batch size is set to 4, with 16 epochs. Since increasing or decreasing the batch
size affects the number of steps executed in a single epoch, it is chosen to change the number of
epochs as well, proportionally to the batch size, to retain the same number of steps during the
training. The network chosen in the previous task (P1.1a d68b6) is used as reference, and since
for theoretical and technical reasons the batch size should be a power of 2, it is only evaluated
a reduction of the batch size to 2 and an enlargement to 8 and 16, with 8, 32, and 64 epochs
respectively. Just for a better interpolation of these values, it is tried out also a batch size of 6
and 12 with 24 and 48 epochs respectively. The results are shown in Table 4.
It can be seen that the improvement or the deterioration of the metrics is strongly correlated
to the batch size and the number of epochs employed. There is an overall enhancement of the
performance augmenting both of them, but at the cost of increasing the total training time.
Therefore, a trade-off must be made in the choice of this hyper-parameter; it must be considered
not only the evaluation metrics, but also the acceptable maximum training time. Among the
runs that increase the metrics, it is then chosen the run P1.1b 0b891 with a batch size of 8,
32 epochs and a training time of 7h 20m, to stay in a reasonable time without exceeding the
original training time of 4h 25m too much. Its metrics scores are total: 46.276, semseg:
71.678, depth: 25.402, while the grader performances are total: 46.022, semseg: 71.655,
depth: 25.633.

batch

Run name Batch size |
n. epochs

Metrics training time
total ↑ semseg ↑ depth ↓

P1.1b 79cc1 2 | 8 38.122 66.419 28.297 3h20m

P1.1a d68b6 4 | 16 43.482 69.925 26.443 4h25m

P1.1b 3bd9c 6 | 24 45.044 70.955 25.912 5h50m

P1.1b 0b891 8 | 32 46.276 71.678 25.402 7h20m

P1.1b 14fc8 12 | 48 47.456 72.561 25.105 10h35m

P1.1b be212 16 | 64 47.990 72.981 24.991 13h20m

Table 4: Results of the tested runs for the tuning of the batch size.

It is important to emphasize the essential aspect of the number of epochs related to the batch
size. From Figure 1 it can be seen that when a particular run reaches its last epoch, it out-
performs the other ones, if they are contemplated only up to that epoch. However, it will be
outperformed if it the maximum number of epochs of the other runs are considered, i.e. when
the other run are completed. In other words, a run with a bigger batch size has better metrics
than a run with a smaller one only if they have a number of epochs proportional to their batch
size. Considering the same number of epochs, a smaller batch size outperforms a bigger one.
The latter needs more epochs to reach the same level and eventually surpass the run with a
smaller batch size, since each of its epochs performs less steps. With the same total steps
completed during the training (thanks to a number of epochs proportional to the batch size),
the run with the bigger batch size is capable to outperform a smaller batch size, as anticipated
in the introduction of this subsection.

3



Figure 1: total metric of the tested models for the task weighting.

c) Task weighting

Finally, the last hyper-parameters to tune are the loss weights of the semantics and depth tasks.
A proper balance must be found between the two losses, to improve the joint performance. By
default, the tasks are equally weighted: the loss weights of the semantics and depth tasks are
both 0.5. The network P1.1b 0b891 chosen in the previous subsection is used as reference.
The heuristic search of the best hyper-parameters is initiated sampling uniformly the hyper-
parameters range, to have a general view of what range of values enhances the performances.
It is investigated the semantics/depth loss weight ratio of 0.2/0.8, 0.4/0.6, 0.6/0.4, and 0.8/0.2,
with the results displayed in Table 5. For obvious reasons the semantics/depth weights range
limits, 1/0 and 0/1, are not tested since this would completely disregard one of the tasks.

task weighting

Run name Loss weights
semseg | depth

Metrics

total ↑ semseg ↑ depth ↓

P1.1c 756bb 0.2 | 0.8 44.538 69.653 25.114

P1.1c 53575 0.4 | 0.6 46.008 71.236 25.228

P1.1b 0b891 0.5 | 0.5 46.276 71.678 25.402

P1.1c 4a169 0.6 | 0.4 46.229 71.992 25.763

P1.1c 6a37c 0.8 | 0.2 45.647 72.218 26.571

Table 5: Results of the tested runs for the tuning of the tasks weights.

As one might expect, the results of the individual metrics semseg and depth are strongly related
to their weights: increase the weight of a task brings a better score in that task, and vice-versa.
However, the collective improvement and deterioration of the metrics of the two tasks do not
cancel each other out. As it can be seen in Table 5, the total score begins to decrease when
you move away from the semantics weight value of 0.5-0.6 (and consequently from the depth
weight value of 0.5-0.4). Since the semantics loss weight values of 0.5 and 0.6 (runs P1.1b 0b891
and P1.1c 4a169) provide the best and very similar total performance (46.276 and 46.229),
a more specific value investigation is carried out to determine the best weights ratio.
The weights 0.5/0.5 and 0.6/0.4 are tested again, together with their middle values 0.55/0.45.
Since also the previous tests with the same hyper-parameters must be taken into account for
the evaluation of the best model, the 0.55/0.45 values are tested twice, so for each weights ratio
there will be two runs to examine. A finer sampling of the range is not investigate since the
results of the two networks are very similar, so it won’t make sense to do a bigger analysis
as the one performed in Problem 1.1.a. In the current case, the differences between the final
total score are smaller than the metrics variance, hence it will be difficult to assess a precise
best value inside the range. Due to the random initialization of the weights but also to the

4



random order of the training samples, each model will not always have the same final score
values, the metrics will have a certain variance. This is the reason of why two runs for each
hyper-parameter value are now considered, to try to have a raw estimation of this variance. A
more recommended strategy is to test more than two runs (theoretically, infinite runs) to have
more precise statistics of the mean and variance of each network.

refining task weighting

Run name Loss weights
semseg | depth metrics/total ↑

P1.1b 0b891 0.5 | 0.5 46.276

P1.1b b5ac0 0.5 | 0.5 46.027

P1.1c 73e8c 0.55 | 0.45 46.345

P1.1c a3cae 0.55 | 0.45 46.467

P1.1c da60c 0.6 | 0.4 46.262

P1.1c 4a169 0.6 | 0.4 46.229

Table 6: Results of the tested runs for refining the tuning of the tasks weights.

The results of the total metric of the tested runs are displayed in Table 6. Since the first
and second best results (46.467 and 46.345) are achieved with the 0.55/0.45 weights, these
values are chosen as the final hyper-parameters. The two tasks should have approximately the
same importance in the weights update, or the joint performance will be negatively affected.
The best run P1.1c a3cae with total: 46.467 has individual metrics performance of semseg:
71.961, depth: 25.495, while the grader scores are total: 46.383, semseg: 71.981, depth:
25.598.

1.2 Hardcoded hyperparameters
a) Initialization with ImageNet weights

All of the different networks tested until now during the hyper-parameters tuning were trained
from scratch, with a random initialization of the weights, without exploiting any external knowl-
edge realated to the tasks. Generally, a common solution to enhance the training for a certain
task is to benefit from the weights learned by another network on a similar task, a procedure
called transfer learning. Instead of making a fresh start, the network is initialized with these
pretrained weights to improve and speed-up the performances.
To test if the model designed up to now could benefit from transfer learning, the ResNet34
encoder of the network is initialized with the pretrained weights from a model trained with
the ImageNet database. As shown in Table 7, with this simple and fast modification, the
performances are indeed improved from the previous model P1.1c a3cae, which did not use
the pretrained weights in the encoder. The tested run P1.2a 44ba0 with the ImageNet weights
gives the following metrics values: total: 49.417, semseg: 74.108, depth: 24.691, while the
grader scores are total: 49.232, semseg: 74.113, depth: 24.881. Given the results, from
now on the models that will be tested for the next problems will employ a pretrained encoder.

pretrained encoder

Run name pretrained Metrics

total ↑ semseg ↑ depth ↓

P1.1c a3cae no 46.467 71.961 25.495

P1.2a 44ba0 yes 49.417 74.108 24.691

Table 7: Comparison between the current best network and the same network but with pretrained weights.

5



b) Dilated convolutions

Staying within the encoder module, another possible improvement could be the implementation
of dilated convolutions to expand the receptive field of the features of the layers of the encoder.
With a standard 3x3 convolution, each feature of a layer has a receptive field of 3x3 on the
previous layer, while with a dilated convolution of dilation 2, the feature will now have a 5x5
receptive field on the previous layer. This extension makes the features able to better infer
the context of their neighborhood, since they can draw more information from a larger area
around themselves. Theoretically, the encoder should accomplish a more valuable extrapolation
of information from the input image, generating more advantageous features to be passed over
in the network.
The dilated convolutions are tested with the run P1.2b 172ab, in which a dilation of 2 is activated
in the fourth layer of the encoder, which is its last layer. The results obtained can be visualized
in Table 8, where the previous model P1.2a 44ba0 with standard convolutions (i.e. with dilation
1) is used as a reference.

dilation encoder

Run name dilation last layer Metrics

total ↑ semseg ↑ depth ↓

P1.2a 44ba0 1 49.417 74.108 24.691

P1.2b 172ab 2 60.497 81.177 20.68

Table 8: Comparison between the current best network and the same network but with dilated convolutions.

The dilation provides a great leap in performance: its activation significantly improves the evalu-
ation metrics, with the new enhanced results of total: 60.497, semseg: 81.177, depth: 20.68.
The grader scores are total: 60.547, semseg: 81.287, depth: 20.740. Thanks to the exten-
sion of the receptive field, the network is relying on better features provided by the encoder. For a
visual example of the improvement, in Table 13 of the Appendix it can be observed that the model
P1.2b 172ab produces more details and more defined contours of the semantic segmentation of
the objects, which become more distinguishable, while the previous models provide a less detailed
segmentation, especially in edges and small objects. Also the depth estimation is sharper, some
contours of the objects become recognizable, but the overall output image prediction is still a bit
blurred. Due to the improvements, for the subsequent problems the dilation on the last layer of
the encoder will be kept activated.

1.3 ASPP and skip connections
The aim of this task is to implement the ASPP module and the skip connections to the decoder,
in a way similar to the DeepLabv3+ model proposed in [5]. The ASPP module, which stands for
Atrous Spatial Pyramid Pooling, consists in computing different atrous convolutions with different
rates in parallel, in order to encode the multi-scale context information. In addition to these
atrous convolutions, an ImagePooling module is implemented, in which global average pooling is
applied to the output feature map of the encoder, followed by a 1x1 convolution with 256 filters
and a batch normalization layer, as proposed in [4]. The output of the batch normalization layer
is then upsampled through bilinear interpolation in order to recover the initial height and width
of feature map. The ImagePooling module is introduced to integrate global context information
into the model. Moreover, an additional 1x1 convolution is performed in parallel to the previous
operations.

The output of the ASPP module is then obtained by concatenating the feature maps of the different
atrous convolutions and the one of the ImagePooling module, and by applying an additional 1x1
convolution that reduces the number of output channels to 256. The code of the implemented
ASPP module is reported in Figure 2. Each atrous convolution corresponds to an ASPPpart

6



module, which contains a 3x3 convolution layer, followed by a batch normalization and a ReLU.
In each of the 3x3 convolutions, the kernel size is set to 3, the stride is set to 1, while the dilation
takes different values according to which atrous convolution has to be implemented, and the values
are expressed in the rates list. The default values of the rates list are (3, 6, 9).

Figure 2: Code snippet of the ASPP module.

Figure 3: Code snippet of the ImagePooling module.

As far as the padding parameter is concerned, in order to preserve the spatial dimensions (width
and height) in the different convolutions, its value is set equal to the dilation value of each specific
atrous convolution. The reason is that, whenever a 2D convolution is applied, the height and width
of the output feature map depends on the dimensions of the input through the following relations:

Hout =
[
Hin + 2×paddingH −dilationH × (kernel sizeH −1)−1

strideH
+ 1

]
(1)

Wout =
[
Win + 2×paddingW −dilationW × (kernel sizeW −1)−1

strideW
+ 1

]
(2)

The condition for which Hout =Hin and Wout =Win apply, in the specific case in which stride= 1,
is the following:

2×padding−dilation× (kernel size−1) = 0 (3)

which is satisfied for padding = dilation, since the kernel size is set to 3 in this case.

From a more technical point of view regarding the implementation, a new torch.nn.Module() is
initialized in the ASPP class, in which the parallel operations are represented by sub-modules

7



added through the add module function. In the forward() method the output is given by a list
containing the outputs of the different children modules, whose values are then concatenated along
the dimension of the features channels and given to the last 1x1 convolutional layer. This last
convolution, followed by a batch normalization and a ReLU, takes an input of out channels×
(len(rates)+2) channels (the 2 refers to the 1x1 convolution and the ImagePooling module which
run in parallel with the atrous convolutions) and outputs a tensor with 256 channels.

Although the output feature map of the ASPP module encodes rich semantic information, due to
the numerous pooling and convolution operations in the process, most of the detailed information
like the ones related to the object boundaries are not preserved. The DeepLabv3+ model introduces
skip connections to the decoder, which integrate the features coming from the encoder network, in
order to recover the spatial information and obtain sharper segmentation results along the object
boundaries. The implementation of the decoder is shown in Figure 4.

Figure 4: Code snippet of the implementation of the skip connections in the Decoder network

The decoder takes as input both the low level features from the encoder, in particular those
corresponding to scale 4, and the output feature map of the ASPP module. First, it applies a 1x1
convolution to the features from the encoder, with the aim of reducing the number of channels.
In [5] it is investigated that reducing the channels to 48 brought the best results. The resulting
feature map is then concatenated with the features coming from the ASPP module once they have
been upsampled to the same dimensions. After that, the concatenated feature maps undergo two
consecutive 3x3 convolutions with 256 filters, still proposed by [5], and a final 1x1 convolution that
computes the output predictions of the network.

Table 9 shows the comparison between the evaluation metrics of the previous model P1.2b 172ab
and the ones obtained by implementing the ASPP module with the skip connections (run P1.3 ddebf).
The implemented modules led to a significant improvement in the network performance, achieving
the following results: total: 64.538, semseg: 84.798, and depth: 20.26. The scores of the
grader are total: 64.537, semseg: 84.931, and depth: 20.393. It can be observed that the
main contribution of this improvement is given by the segmentation part, which increased from
81.177 to 84.798, while the depth estimation only shows a slight decrease of the SI-logRMSE. A
potential reason could be that the refinement of the object boundaries, which is the result of adding
skip connections to the decoder, is more beneficial for the segmentation, since it requires sharp
edges to correctly separate the different elements in the scene, rather than the depth estimation.

8



ASPP module with skip connections

Run name Atrous rates Metrics

total ↑ semseg ↑ depth ↓

P1.2b 172ab - 60.497 81.177 20.680

P1.3 ddebf (3,6,9) 64.538 84.798 20.260

Table 9: Comparison between the current best network and the one with ASPP and skip connections implemented.

The benefits of this model can be observed also in Table 13 of the Appendix, by comparing the
prediction results obtained with the ASPP module and the skip connections, with those computed
previously. While in the previous models the object boundaries in both the segmentation and
depth predictions were still quite blurred, now, in particular thanks to the addition of the skip
connections to the decoder, the edges are much more well-defined and sharp. Moreover, a lot of
small details are now much more visible and distinguishable, like the sidewalk poles, the road signs
and the foliage of the trees.

Problem 2 - Branched architecture
In the previous problem, segmentation and depth estimation tasks were trained on the same joint
architecture, sharing all the parameters in both the encoder and the decoder networks, except
for the last convolutional layer that generated the corresponding predictions. Now a branched
architecture will be implemented, based on what is proposed in [7] and [8], in which segmentation
and depth estimation share the same parameters of the encoder network, but they have separated
branches with task-specific ASPP modules and decoders. Branched architectures are usually rec-
ommended for multi-task learning since they allow, with respect to the previous joint architecture,
more specific training along the different branches for each task. At the same time, they are also
preferred to multiple separated networks for single-task training, since the memory allocation and
the inference time are reduced due to the shared layers, and they also seem to perform better and
improve generalization. However, with respect to the joint architecture encountered earlier, the
computational overhead is undoubtedly higher, but it is the price to pay for an increase in the
performance, as it will be discussed later.

The implementation of the branched architecture, whose code is shown in Figure 5, is based on the
ASPP and decoder modules already used in the joint architecture. Firstly, the channel outputs for
the segmentation and the depth estimation are computed from the outputs desc dictionary. Then,
a torch.nn.Module() is initialized, in which the two added modules represent the segmentation and
the depth branches of the model. An ASPP Decoder class is defined, containing the ASPP module
and the decoder previously implemented, in order to simplify the code in the main class. In the
forward() method, instead, the feature maps are computed independently for each branch, and skip
connections are added for both decoders (the low level features coming from the encoder, namely
the tensor features[4], are given as input to the decoder in both the segmentation and the depth
branches). The final output predictions are then upsampled in order to have the same resolution
as the input, and they are assigned to the corresponding keys of the out dictionary.

DeepLabv3+ model

Run name Branched
architecture #Parameters Computational

complexity
Metrics

total ↑ semseg ↑ depth ↓

P1.3 ddebf % 26.72 M 13.66 GMac 64.538 84.798 20.26

P2 115c1 ! 32.14 M 19.99 GMac 65.417 84.883 19.466

Table 10: Comparison between the branched and the joint architectures of the DeepLabv3+ model.

A comparison between the performance of the branched model P2 115c1 and of the joint one
P1.3 ddebf is presented in Table 10. A slight improvement in the branched architecture is observed,
which comes mainly from the depth estimation task, while the performance of the segmentation

9



Figure 5: Code snippet of the branched architecture of DeepLabv3+ model.

stays more or less unchanged. In fact, the semseg metrics yields an improvement of just 0.1%,
going from 84.798 in P1.3 ddebf to 84.883 in P2 115c1, while with these modifications the depth
metrics reaches the value 19.466; overall, the branched architecture achieves a total score of
65.417. The grader performances are total: 65.453, semseg: 84.993 and depth: 19.539.
By observing the results in Table 13 of the Appendix, it can be seen that there is no significant
difference from the results of the previous task. While the segmentation predictions are almost
comparable, the only visible difference is that the depth predictions are now smoother, with more
gradual changes as we move away from the camera.

On the other hand, it is witnessed a significant increase in the training time, with every single epoch
lasting around 56 minutes instead of the 43 minutes in the previous task (an increase of 30% of the
training time). This is justified from the evident increase in the amount of trainable parameters. In
the branched architecture, while the parameters of the encoder are shared between the two tasks,
the remaining parameters have doubled in number, since there are now two separate branches with
their own ASPP module and decoder with skip connections. In fact, as it can be seen in Table 10,
the number of parameters has increased from 26.72M in the joint architecture to 32.14M in the
branched architecture. Even though the number of parameters in the ASPP module and decoder is
doubled, the percentage increase is only 20.28%. The reason is that, as it can be observed by giving
a closer look into the computed statistics, the majority of parameters is coming from the encoder
network instead of the decoder. The number of parameters and the computational complexity is
referred to an input RGB image (3 channels) with size 256×256 (the dimension of the crop size
used during the training), and they are computed through get model complexity info() function of
the ptflops library [2].

10



Problem 3 - Task distillation
The branched architecture already increased the performance of the model, but further improve-
ments can still be achieved thanks to more advanced techniques, such as task distillation. This
approach is implemented through Self-Attention modules (SA) [9], which control the information
flow across the different tasks and behave as a sort of gate function that learns to either exploit or
ignore the features coming from other tasks. The whole implementation results in a new decoding
stage, which fuses together the output of the previous decoder with the information distilled from
the other tasks. Therefore, there are now two losses for each task, which are summed up together
to have a single optimization objective.

The already implemented SA module consists in computing an attention mask, which is basically a
sigmoid activation function applied to the output of a 3x3 convolution on the feature map coming
from the decoders of the first stage. The attention mask is then multiplied with the same feature
map of the previous 3x3 convolution. An example of how these computations look like, the formula
for the segmentation branch is:

Gdepth
i ← σ

(
Wg⊗F depth

i

)
(4)

F o,seg
i ← F seg

i +Gdepth
i �

(
Wg⊗F depth

i

)
(5)

whereGdepth
i is the attention mask computed on the features of first decoder of the depth estimation

branch, Wg represents the kernel parameters (in this case it is a 3x3 convolution with padding=1 ),
F seg

i and F depth
i are the output features of the decoders in the first stage, and F o,seg

i is the feature
map given as input to the final decoder in the segmentation branch.

In fact, the output of the SA module is added to the output features of the decoders of the
first stage (the feature maps before the final 1x1 convolution that computes the output predic-
tions), and the result is given as input to the final decoders, which are implemented in the class
DecoderDeepLabV3p no skip connections. The two decoders in the final stage are different from
the ones previously used, since skip connections are not added back this time. The code of the
DeepLabv3+ model with skip connections is displayed in Figure 6.

The task distillation yields a significant improvement in the performance with respect to the
P2 115c1 model, as shown in Table 11. The total metrics of the new model P3 9387a increases
from 65.417 to 67.972.

DeepLabv3+ model

Run name Branched
architecture

Task
distillation #Parameters Computational

complexity
Metrics

total ↑ semseg ↑ depth ↓

P1.3 ddebf % % 26.72 M 13.66 GMac 64.538 84.798 20.260

P2 115c1 ! % 32.14 M 19.99 GMac 65.417 84.883 19.466

P3 9387a ! ! 35.69 M 39.34 GMac 67.972 84.837 16.865

Table 11: Comparison between the branched, the distillated, and the joint architectures of the DeepLabv3+ model.

The main improvement is constituted by the depth metric, which drops from 19.466 to 16.865.
On the other hand, the segmentation does not show any improvements, with its value remaining
steady around 84.8. In particular, it can be observed that a slightly higher value was achieved in
the run P2 115c1, namely 84.883 against 84.837. However, the difference is in the order of 1e-2
and it is mainly due to the some fluctuations in the training and due to random initialization, which
introduces some variance. The semantic segmentation does not take benefit from the features of
the depth estimation branch, but the latter is instead improve by the segmentation features. A
reason could be that thanks to the boundaries of the objects defined by the segmentation, the

11



Figure 6: Code snippet of the branched architecture of DeepLabv3+ model with task distillation.

depth estimation can better predict homogeneous depth values inside an individual segmented
region, and heterogeneous depth values at the boundaries of different segmented regions. It seems
instead that the semantic segmentation does not take advantage of the depth features: they are
not adding any new useful information. The grader scores of the model P3 9387a are total:
67.962, semseg: 84.936, and depth: 16.974.

Finally, Figure 7 shows a graphical comparison of the three different architectures implemented
so far, namely the standard DeepLabv3+ (P1.3 ddebf, black curves), the corresponding branched
architecture (P2 115c1, blue curves) and the one with task distillation implemented (P3 9387a, red
curves). The behaviour of the different metrics during the training, namely depth, semseg and
total, is shown in the three charts, providing an overview of what has been discussed so far.

From Table 13 of the Appendix, there is no significant visual improvement in the predicted output
image for the semantic segmentation. However, in the output image for the depth estimation, most
of the artifacts have disappeared and now the predictions are more local coherent, giving to the
image a smoother, but not blurred, appearance. Moreover there is a significant improvement in

12



(a) (b) (c)

Figure 7: Overall view of the metrics of the three architectures. (a) depth (b) semseg (c) total

the depth estimation of the foliage in the foreground, which is very close to the camera: definitely
a very positive improvement for a safer autonomous driving, since it is needed a special attention
to the detection of close objects. An improvement that from the metrics values alone it was not
possible to see.

As a final remark, many other approaches and modifications can be made to enhance even more
the performance of the network. For instance, activating the dilation on the second and third layer
of the encoder instead of the fourth layer; adding one more convolutional layer to the decoders
with skipped connections and two more to the decoders placed after the Self-Attention modules;
exploiting a L1 loss instead of the L2 loss for the depth estimation; increasing the rates of the
ASPP module from 3,6,9 to 6,12,18; adding multiple Squeeze&Excitation modules [6]: one after
the encoder, two after the ASPP modules (one each), four inside the decoders (one each), before
the prediction layer. To not exceed the training time required up to now (∼ 35 hours), the batch
size and the number of epochs are reduced respectively from 8 to 4 and from 32 to 16. With these
architecture improvements and model modifications, the network P3+ 39a6e performs total:
71.698, semseg: 87.129, depth: 15.43. There is an improvement not only in depth estimation
but also a in the semantic segmentation, a good result since the latter was until now practically
unaffected neither by the branched architecture nor by the addition of the task distillation. The
grader scores of this enhanced model are total: 71.816, semseg: 87.317, depth: 15.501.

extra improvements

Run name Metrics

total ↑ semseg ↑ depth ↓

P3 9387a 67.972 84.837 16.865

P3+ 39a6e 71.698 87.129 15.430

Table 12: Comparison between the branched and joint architectures of the DeepLabv3+ model.

From Table 13 of the Appendix the improvement of the semantic segmentation can be seen in
the boundaries, especially the ones of small or thin objects, like the poles at the side of the road.
The output image for the depth estimation is smoother and with more recognizable boundaries
with respect to model P3 9387a, but the most obvious difference is that now the foliage in the
foreground is not predicted as close as it should be. Even if the depth is decreased even more in
the enhanced model (probably for the use of the L1 loss), the metric value should not be the only
assessment resource. Since the goal is to construct a network specifically for autonomous driving,
it is very important to correctly detect objects close to the camera. The enhanced model achieves
better metrics scores both in the segmentation and the depth estimation, but regarding the latter
it could be less safe in an autonomous driving task.

13



Naturally, many other improvements can be made. The modifications shown are weighted so to
not increase the training time, but if it is not a big concern, then more addition to the architecture
can be assembled, such as more convolutional layers, bigger kenels, adding skip connection also to
the decoders after the Self Attention modules and to the encoder, increasing the batch size and the
number of epochs, etc. Moreover, the network could benefit for some other modifications that do
not change the architecture, such as exploiting the training data augmentation (using geometric
but also colour augmentation), testing the reverse Huber loss for the depth estimation, or using a
boxcox transformation [3] to improve the depth normalization process. The latter is useful since the
depth values normally do not follow a normal distribution, which is an important requirement for
a better training. The box-cox transformation converts the depth values to a normal distribution,
which could enhance the training of the depth estimation.

14



Appendix

(a) (b) (c)

Figure 8: Example of one of the images used for the validation. (a) RGB image fed to the network (b) Ground Truth
for the semantic segmentation (c) Ground Truth for the depth estimation

Run name Semantic
segmentation

Depth
estimation

original 37628

P1.1a d68b6

P1.1b 0b891

P1.1c a3cae

P1.2a 44ba0

P1.2b 172ab

P1.3 ddebf

P2 115c1

P3 9387a

P3+ 39a6e

Table 13: Prediction results of the best models of each subsection of the project.

15



Problem Run name Complete run name
original 37628 G18 0403-2221 P1 original test 37628
P1.1a 1f725 G18 0404-2015 P1.1a SGD lr test4 1f725
P1.1a 61964 G18 0404-1826 P1.1a SGD lr test3b 61964
P1.1a 06c0d G18 0404-1527 P1.1a SGD lr test1b 06c0d
P1.1a 47e22 G18 0405-1837 P1.1a Adam lr test4 47e22
P1.1a d68b6 G18 0405-1318 P1.1a Adam lr test1b d68b6
P1.1a 27e27 G18 0405-0837 P1.1a Adam lr test2 27e27
P1.1a 4d200 G18 0405-1347 P1.1a Adam lr test3 4d200
P1.1a d10d0 G18 0407-0125 P1.1a Adam lr test6 d10d0
P1.1a 237dc G18 0408-1946 P1.1a test8 237dc
P1.1a 81237 G18 0406-2049 P1.1a Adam lr test5 81237

1.1.a

P1.1a 10da7 G18 0407-2049 P1.1a Adam lr test7 10da7
P1.1b 79cc1 G18 0407-1220 P1.1b test7 79cc1
P1.1b 3bd9c G18 0407-2212 P1.1b test8 3bd9c
P1.1b 0b891 G18 0409-1032 P1.1b test9 0b891
P1.1b 14fc8 G18 0409-1225 P1.1b test10 14fc8

1.1.b

P1.1b be212 G18 0409-2316 P1.1b test11 be212
P1.1c 756bb G18 0411-1526 P1.1c test4 756bb
P1.1c 53575 G18 0410-1025 P1.1c test1 53575
P1.1c 4a169 G18 0410-1414 P1.1c test2 4a169
P1.1c 6a37c G18 0411-1459 P1.1c test3 6a37c
P1.1b b5ac0 G18 0410-1917 P1.1b test9b b5ac0
P1.1c 73e8c G18 0410-2315 P1.1c test6b 73e8c
P1.1c a3cae G18 0412-2033 P1.1c test6d a3cae

1.1.c

P1.1c da60c G18 0411-0702 P1.1c test2b da60c
1.2.a P1.2a 44ba0 G18 0413-1240 P1.2a test1 44ba0
1.2.b P1.2b 172ab G18 0415-1021 P1.2b test1 172ab
1.3 P1.3 ddebf G18 0415-0651 P1.3 test2 ddebf
2 P2 115c1 G18 0417-2157 P2 test2 115c1

P3 9387a G18 0427-1826 P3 test4 9387a
3

P3+ 39a6e G18 0507-1717 P3+ enhanced 39a6e

Table 14: Full name of all the models presented.

16



References

[1] Keras Tuner documentation. URL https://keras-team.github.io/keras-tuner/.

[2] URL https://pypi.org/project/ptflops/.

[3] G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal
Statistical Society. Series B (Methodological), 26(2):211–252, 1964. ISSN 00359246. URL
http://www.jstor.org/stable/2984418.

[4] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic
image segmentation. CoRR, abs/1706.05587, 2017. URL http://arxiv.org/abs/1706.05587.

[5] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. CoRR, abs/1802.02611, 2018. URL
http://arxiv.org/abs/1802.02611.

[6] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. CoRR, abs/1709.01507, 2017.
URL http://arxiv.org/abs/1709.01507.

[7] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool. Fast
scene understanding for autonomous driving. CoRR, abs/1708.02550, 2017. URL
http://arxiv.org/abs/1708.02550.

[8] S. Vandenhende, B. D. Brabandere, and L. V. Gool. Branched multi-task networks: Deciding
what layers to share. CoRR, abs/1904.02920, 2019. URL http://arxiv.org/abs/1904.02920.

[9] D. Xu, W. Ouyang, X. Wang, and N. Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. CoRR,
abs/1805.04409, 2018. URL http://arxiv.org/abs/1805.04409.

17


