Project 1: Understanding Multimodal Driving Data

Deep Learning for Autonomous Driving
Team ID 18
Ivan Alberico, Nicola Loi
March 01, 2021 - March 25, 2021

Problem 1 - Bird’s eye view

To visualize the point cloud from a top view, only the the x and y coordinates of the point cloud must be considered, together
with the reflectance intensity of each point. These information are extracted from data.p file, where the position of the points is
expressed in the Velodyne frame. To simplify the creation of the image, it is convenient to work with positive pixel coordinates
only, and in order to do so, a translation in the Velodyne frame is performed. This is achieved using the negative values of the
minimum x or y of the entire point cloud as offsets for the translation, in case they are negative. If the minimum value along
either the x or y axis of a coordinate is non-negative, no translation is performed in that specific coordinate (null offset):

{x()ffsel = - min(xvelo) if min(xvelo) <0

x?,velo = Xivelo +Xoffset ith Xoffset = 0 otherwise W
w1
yg,velo = YiyvelotYoffset Yof fset = — min(}’velo) if min(}’velo) <0
Yoffset = 0 otherwise

Now that x’ and y’ coordinates of the point cloud are all positive, they are converted in pixel coordinates (respectively row and
column coordinates) through the proportion 0.2 meter/pixel, rounding up the result to the next integer:

xl /
row; = L)z—‘ column; = {OyZ—‘ 2)

Points belonging to the same pixel (same row and column values) are grouped together in the same bin. The maximum intensity
between the points of a bin is chosen to represent the corresponding pixel. To visualize the result, the first step is the creation
of a complete black image, with dimension equal to the maximum values of the pixel coordinates obtained from the previous
conversion (Formula 2). Starting from the top-left corner of the image, the color channels of each pixel are set to be 255 multiplied
by the corresponding maximum intensity, since the latter is a value between 0 and 1 while the pixel intensity is defined between
0 and 255. At the end, Figure 1 is obtained (rotated by 90° for visualization purposes).

Figure 1: Bird’s eye view of data.p. x positive axis pointing to the right, y positive axes pointing upwards.

Problem 2 - Visualization

The main goal of the second problem is to visualize the LIDAR point cloud of the scene onto the images of Cam2. The projected
points should be colored according to their semantic labels and each vehicle should be delimited by a 3D bounding box.

Figure 2: Original Cam?2 image taken from data.p file

2.1

What is needed for this task are the coordinates of the points in the point cloud, the transformation matrix from the Velodyne to
the CamO frame, the projection matrix from the Cam0 to the Cam?2 frame, the semantic labels of each point and the BGR color
map for each label. All these data are extracted from the data.p file.

In order to project the points on the image from the Velodyne frame, they first need to be transformed into the CamO reference
frame. To do that, each point is first transformed in its homogeneous representation by adding a 1 to each array of coordinates
(obtaining a 1 x 4 array for each point), and then the whole point cloud matrix is premultiplied with the matrix 740 vero - The
points in the Cam0 frame are then filtered by excluding those behind the camera, i.e. the ones that have a negative z coordinate
(since in frame Cam0 the z axis is the one facing forward).

Once the points have been filtered out, the projected points on Cam?2 image are obtained by premultipling the filtered point cloud
matrix in frame Cam0 by the projection matrix P20, and then dividing the result by the z coordinate of those points, according
to the following formula:

@ 3y
i,img 1 (0)
2 _ Yi
yg,i?ng = EPMCQO Z(O) (3)
1 i l

1

After this projection onto the image plane of Cam2, another filtering step is performed in order to remove all the points that

lie outside the image, discarding the ones that do not respect the inequalities 0 < PP img.shape[0] (width) and 0 < yg,i?g <

img
img.shape|1] (height). With this being done, at each point is assigned its corresponding BGR color, cross-referencing its semantic
labels with the color map dictionary. To display the points on the image the function cv2.circle() from OpenCV library is used.

The final result is shown in Figure 3.

Figure 3: LiDAR point cloud projected onto the Cam2 image, with each point being assigned to a color according to its label

2.2

The objective of the second task is to project onto the Cam2 images a 3D bounding box around each detected vehicle. The
additional data needed for this part are the dimensions of each bounding box, the x, y, z coordinates of the center of the respective
bottom face and the angle of rotation around the y axis. Each bounding box is essentially a rectangular box described by the 8
vertices delimiting its shape. These data are with respect to the Cam0 frame; to construct a bonding box in the Cam2 image,
some intermediate steps are required.

Firstly, the 8 vertices of each bounding box are computed through the given width, length and height dimensions, centering them
around the origin of the Cam0 frame. After that, each bounding box is rotated around the y axis, according to the rotation_y value.
Once rotated, the 8 vertices are translated according to the given center coordinates of the bounding boxes. Finally, the vertices
are brought in their homogeneous representation and premultiplied by the projection matrix P20, in order to project them onto
the image plane of Cam2 (Formula 3). Then, the lines of the bounding boxes are displayed through the function cv2line(). For
each bounding box there are in total 12 lines connecting all the adjacent vertices.

Figure 4: 3D bounding boxes projected onto the Cam?2 image around each vehicle of the scene

23

The goal of the last task of Problem 2 is to modify the 3dvis.py file in order to visualize the point cloud in a 3D scene. In the
update() function, it is necessary to assign to each point of the Velodyne point cloud the corresponding color according to the
semantic label, and these values are then passed to the set_data() function. The color array is normalized (all the values are
divided by 255), since the parameter face_color of the set_data() function only takes values between 0 and 1. Moreover, the first
and third columns of the array are swapped, since the visualization requires colors in the RGB format and not BGR as provided
by the color map. After that, the 3D points are correctly visualized with the corresponding color.

For the bounding boxes, a procedure similar to the one described in Problem 2.2 is applied. The difference here is that it is
not necessary to filter any point, since it is required to display all the points of the point cloud. Once having computed the 3D
coordinates of the vertices of each bounding box, it is necessary to go from the Cam0 to the Velodyne reference frame. Since the
data only provides the T¢4u0,ve10, the inverse homogeneous transformation 7,0, camo is computed in the following way, given that
R and t are the rotation matrix and the translation vector of Ti.40.velo:

“)

RT —RT¢
TveloﬁcamO = ()

0 1

By premultipling the coordinates of the 3D vertices of the bounding boxes with the 7)., cqmo matrix, they are now expressed
in the Velodyne frame, are displayed in the visualization thanks to the provided update_boxes() function. The result obtained is
shown in Figure 5.

Figure 5: 3D visualization of the LiDAR point cloud in 3dvis.py

From the visualization it is possible to see that there are two cars lying within the camera field-of-view that the network fails to
identify (Figure 6). One is a blue car parked on the left side of the street and lying between the turquoise car and the red car, as it
can be seen in Figure 7a , while the other is a car placed right after the Jeep, on the right side of the street, shown in Figure 7b. In
the point cloud visualization, those two cars appear as sparse blue points which are not delimited by any bounding box. From a
qualitative point of view, one could state that is reasonable that the network failed to identify these elements, as they are partially
visible in the image and as they are partially visible in the image and they cannot be easily classified.

Figure 6: 3D visualization of the LiDAR point cloud in 3dvis.py. The red circles delimit the points of the vehicles which are not
identified by the network.

kLY

(a) Vehicle 1 not being identified (b) Vehicle 2 not being identified

Figure 7: Crops of the vehicles which are not identified by the network

Problem 3 - Laser ID

The aim of the third part of the project is to classify each point of the point cloud with a laser ID based on the laser channel that
has generated it. The results are then visualized directly on the projected points on the image, assigning to each point a specific
color depending on its laser ID. For a better visualization, only 4 alternating colours are exploited. First, the elevation angle €
with respect to the horizontal xy plane of the Velodyne frame (as shown in Figure 8) is computed for each point:

Zivel
g =arctan | ——=¢2 (3)

) 2
xi,velo +yi,velo

» P (x,y,2)

r range

¢ elevation

DY O S W M e
i SO a azimuth :

- o ""-.,__4__‘__.—‘

Figure 8: Reference angles representation for the point cloud with respect to the Velodyne frame

The steps to project the points onto the Cam?2 image frame starting from the Velodyne frame, passing through the Cam0 frame,
was already explained in Problem 2.1.

Two different approaches are used, which lead to comparable results. The first approach consists in calculating the FOV (field-of-
view) as the difference between the maximum and the minimum € angles of the whole point cloud, and then dividing this range
by 64, which is the number of channels of the LiDAR sensor, as stated by its specifications. In this way, the FOV is divided in
64 bins, and each point is assigned to a specific bin according to the value of its € angle. To every 4 consecutive bins, 4 different
colors are associated, namely red, green, blue and magenta (Figure 9).

Figure 9: Laser IDs with method 1

The second method consists in assigning a laser ID to each point through clustering techniques. Different clustering methods have
been tested, however after multiple tests the one that achieves the best result was DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) of the scikit-learn library. The parameters used are eps = 0.0005 and min_samples = 50. The feature
exploited for the clustering is only the € angle. The cluster assigns to each point a numeric label, and to every 4 consecutive
label, the 4 different colors are associated as for the first method. The results are shown in Figure 10.

Figure 10: Laser IDs with method 2 (clustering)

The subdivision obtained with the two methods are somehow similar (but with some difference in which color is associated to
which laser channel), however in the second case there are less discrepancies of color in the same channel, but the same ID is
repeated for more channels in sequence, while in the first method is the opposite. Both methods have problems in the correct
classification of the points projected on the car in the foreground.

Problem 4 - Remove Motion Distortion

This last part of the assignment consists of removing from the point cloud the distortion generated by the motion of the vehicle
in which the LiDAR is mounted. For this part, information coming from the camera, the LiDAR and the GPS/IMU sensors are
used. First, all the required are extracted from the data\problem_4 folder through the functions provided in the data_utils.py
file. The point cloud stored in the binary file is extracted through the load_from_bin() function, the timestamps through the
function computed_timestamps(), the linear and angular velocity of the IMU frame through the functions load_oxts_velocity()
and load_oxts_angular_rate(), while all the calibration matrices between the different frames are imported with calib_velo2cam()
(used to import Ty, velo as well) and calib_cam2cam().

Since in the provided point cloud the temporal order is lost (hence the information about which point is taken before which
other point is unknown), the first step is to correctly reorder the points. To recover the temporal order, the points are first sorted
according to the azimuth angle spanning in the horizontal plane (Figure 8) going from 0 to —27 values of . In other words, the
points are reordered starting from the one that faces the positive Velodyne x axis and then continue in clockwise direction (i.e. in
order I'V-III-II-I quadrant).

The obtained array has the points arranged in this order: from the point taken at S.amerq to the one taken at 5,70 end» and then
the points taken from 2,10 srart 10 tScamera (tScamera 15 the timestamp of the photo being taken). To sort this array based on the
chronological order of the points’ scans (¢Sye1o starr — tScamera — tSvelo,end)» it is only needed to cut the array in two parts and
exchange them. To do this, it is necessary to know where the array has to be cut, namely which is the index of the point taken at
tSvelo,stars- Firstly, the time difference between the scans of two consecutive points is computed:

ISvelo,.end — Svelo,start
AtSgean = - - (6)

Npoints

Then the index of the point taken when the Velodyne is starting the scan cycle at 5,14 1 calculated by:

IScamera — Svelo,start 7)
AtSsean

indexg gy =

The array is then correctly rearranged to have the points in the order tSyeio starr — tScamera = tSyelo,end- From this, a new vector
of dimension 7y ¥ 4 is created, which contains the coordinates of the ordered points and the corresponding timestamp ts; at
which they are taken:

1Si = ISimage + (i - indexstart>Atsscan ()

With this being done, next step is to use the velocity information coming from the IMU to remove the motion distortion. Since
the coordinates of the point cloud are given in the Velodyne frame, first it is necessary to bring the points in the IMU frame, by
premultiplying them with Tj,,;, ve10, Which is computed by inverting the matrix 7,, jmy provided in the data:

Xi imu Xivelo Xivelo
T T
Yijimu | T Yivelo | _ Rve[g‘i;nu _Rvelo,imu tvelo,imu Yivelo 9
= Limu,velo - ' ()
Ziimu Zivelo 03,3 1 Zivelo
1 1 1

Once the points are in the IMU frame, the linear and angular velocity of the IMU sensor are used to compensate the motion
distortion in the points. The linear velocity is used to compensate for the displacement while the angular velocity for the
orientation. The correction is computed as follows:

Ccos (61) —sin (61> 0 Vx,imu Ats; Vx,imu (tscamem - l‘S,')
Ri,distortion = | sin (01) Ccos (91) 0 Y distortion = | Vy,imu Ats; | = Vy, imu (tscamera - Z‘S,’) (10)
0 0 1 Vzimu AZ‘S,' Vz,imu (tscameru - l‘S,‘)

/

Xi imu Xiimu
/

Yiiimu | _ Ri,distom'on Y distortion Yi,imu
. =

i imu 033 1 Ziimu

1 1

(1)

where 0; = @ iy AtS; = O jmu (Scamera — t5i) Tefers to the rotation of the points around IMU z axis due to distortion and v jy, =
0. Only the rotation around the z axis and the displacement in the xy plane are taken into account, since the car motion is assumed
to be planar in the short term period. Once the points have been corrected, they are transformed back in the Velodyne reference
frame:

/ / /

xi,velo xi,imu xi,imu
/ / R) . /
yi’\)elg o yiﬂ‘mu o velo,imu tvelo,lmu yi7imu 12
’ — Lyelo,imu / - 0 1 / ()
Zi,velo i,imu 3x3 i imu
1 1 1

The function depth_color() from data_utils.py is then used to assign to each corrected point an H value (in the HSV color scale)
according to its distance dist; from the origin of the Velodyne frame.

dists = \ [} 10> ¥t +7, (13)

i,velo i,velo

Finally, the colored corrected points must be projected onto the Cam?2 image plane. The steps to project them onto the Cam2
image frame starting from the Velodyne frame, passing through the Cam0 frame, was already explained in Problem 2.1. The
colors previously computed are converted in the RGB color scale and the cv2.circle() function is used to visualize the points, as
shown in Figure 11. For comparison, the projection obtained without correcting the distortion of the point cloud is displayed in
Figure 12.

_ ik

Figure 11: Point cloud projection on image 0000000037’ after motion distortion has been corrected

Figure 12: Point cloud projection on image 0000000037 without correcting motion distortion

Problem 5 - Bonus Questions

Y

The risk is higher when the eyes are closer to the sensor because the beams of light emitted by the LiDAR lose energy as they
move away from the emitter. Hence, they have the maximum energy near the sensor, and so the danger is higher. This is the
same reason why the LiDAR can work only up to a specific range: after a certain distance the returning light beams are too weak
to be detected.

2)

The main challenge of wet roads for both camera and LiDAR sensors regards the presence of water in the road, which becomes a
water mirror. A camera works by detecting the passive light that the objects reflect; the problem with a wet road is that it reflects
specularly an object located above it; this is dangerous because the system could erroneously localize the reflected object in a
position where effectively it is not present. It will see the object where actually there is the mirror of water that reflected it.

A LiDAR sensor instead works by detecting the emitted active light that reflects off objects and comes back. In a normal
condition, the diffuse reflection of the light that hit the road allows the sensor to receive back the light emitted, and to properly
detect the road. But if it is wet, the beams of light will be reflected specularly and not diffusely, hence they will not come back to
the sensor which is then incapable to correctly identify the road.

3)

Sensors could never be cocentered because they have a physical volume and occupy a physical three dimensional space: it is
impossible to place two sensor in the same exact position, the best one can do is to try to place them as close as possible to each
other. Since the sensors are non-cocentered, some important points of the point cloud in front of the LiDAR could be lost in the
transformation from the LiDAR frame to the image planes of the cameras. The camera could see only the points that lie in the
superposition of its FOV with the one of the LiDAR. So even if the two sensors are close, the camera will be blind to a large
chunk of the point cloud space, as shown in Figure 13a.

Increasing the relative position of the camera with respect to the LiDAR, the superposition of their FOVs varies, and consequently
the camera may see less points inside its FOV. As shown in Figure 13b, when the sensors are moved laterally from each other
more and more, the blind spot of the camera for close points (such as an obstacle in front of the vehicle) augments. Instead if the
sensor are moved longitudinally, i.e. the camera is placed ahead of the LiDAR, increasing their distance will increase the blind
spot of the camera for points lateral to the vehicle.

10

° o
e® oee . x
e ®
¥
camera

°
e0 o0 ‘....'.
5]
@ g *
(X}
(-]
Y 'o..'..
LX)
°
%
=

(b) Sensors far away from each other

(a) Sensors close to each other

Figure 13: Superposition (in green) of the FOVs of a camera and of a LiDAR.

Another problem is occlusion: the more the camera and the sensor are far away from each other, the higher the chance that some
area of the image will be free of projected points of the point cloud. This occurs when objects are relatively near to the two
sensors; the LIDAR will detect them, but not what is behind them. The camera, since it is placed in another position, will see the

space that has been occluded by the objects to the LiDAR.

11

