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Abstract

In this work we present End-2-End Self-Supervised
SLAM, a pipeline combining gradSLAM, which enables
SLAM systems to be posed as differentiable computational
graphs, and online adaption to boost performance on in-
door scenes. We train and test on two different datasets,
implement an online adaptation module for refinement, ex-
plore the usage of uncertainty predictions and unsupervised
scale learning, and supplement our work with experiments
on weak supervision. Our framework generalizes well to
previously unknown scenes, and through the online adap-
tation module we successfully address challenges related to
indoor self-supervised depth estimation.

1. Introduction

Simultaneous localization and mapping (SLAM) is
widely used in robotic perception and state estimation. It
proposes frameworks for determining the current pose of
the vehicle and reconstructing the surrounding scenes in 3D
while navigating a trajectory. While real-time SLAM meth-
ods reconstructing depth maps from a moving depth sen-
sors have increased in popularity recently [13, 17, 22], they
are limited by the depth sensors’ working range and perfor-
mance under sunlight. Color cameras are ubiquitous and
inexpensive, sparking an interest in working with monocu-
lar video for dense and semi-dense SLAM [4, 16], where
consecutive image pairs are treated as coming from a stereo
camera rig. Applicability of monocular SLAM is limited by
the inherently ambiguous absolute scale of the reconstruc-
tion. To address this issue, the use of deep Convolutional
Neural Networks (CNNs) for regressing depth at a rela-
tively high resolution and absolute accuracy has recently
been explored [20], where direct monocular depth estima-
tion is combined with depth predictions from a supervised
deep neural network. To further facilitate the integration
of deep learning in SLAM, a framework called gradSLAM
has recently been proposed. It allows SLAM pipelines to
be posed as differentiable computational graphs, making it
possible to employ gradient-based learning techniques, on
which machine learning depends [12].
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A drawback of supervised deep networks, is that they
need large labeled datasets to be properly trained. Creat-
ing labeled datasets for each of the countless SLAM ap-
plications is a laborious and expensive effort, which is
why research has recently focused on some form of self-
supervision, e.g. synchronized stereo pairs [6, 7], or monoc-
ular video [23]. Self-supervision helps to mitigate the ne-
cessity for large labeled datasets, which is especially desir-
able for autonomous systems that are deployed in both out-
and indoor environments, between which exists a consid-
erable domain gap and large differences in scale. SLAM
is employed both in outdoor and indoor environments, and
could therefore greatly benefit from self-supervised depth
predictions. Nevertheless, self-supervised depth prediction
faces its own challenges. In the context of indoor scenes,
with which we are mainly concerned, these include:

* Abundance of non-Lambertian surfaces and low-
texture scenes that do not provide meaningful gradi-
ents.

* High degree of rotational movement in camera motion,
which acts as noise.

* Scale inconsistency of pose estimates over different
samples.

Ideally, we would want a system that incorporates
SLAM from monocular video and fully self-supervised
depth predictions, in order to navigate and map any en-
vironment in real time without prior knowledge. For this
reason, we propose End-2-End Self-Supervised SLAM, a
pipeline that estimates pose and depth from image pairs of
a monocular video stream and implements self-supervision
by cross-checking, updating and refining the reconstructed
scene in a 3D point cloud. This is achieved through a com-
bination of a depth network and gradSLAM. As shown in
Fig. 1, our model estimates and refines a depth map for each
new key frame through an online adaptation module, which
is then fed into the actual SLAM pipeline for reconstruc-
tion of a global point cloud and the estimation of the cur-
rent pose. For the online adaption module, we use ground
truth poses to address the issues of self-supervised learn-
ing for indoors mentioned before. We train and validate our
model on two separate datasets, [CL-NUIM [9] and TUM
[19]. Both qualitative as well as quantitative results are in-
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Figure 1. Our proposed End-2-End Self-Supervised SLAM pipeline with online adaptation module.

cluded for both datasets, suggesting that our model gener-
alizes well and benefits from our online adaptation module.
We outline the following contributions:

* A self-supervised SLAM system based on PointFusion
with gradient based learning.

* Implementation of an online adaptation module to re-
fine our self-supervised depth predictions.

* Investigation into uncertainty predictions, scale learn-
ing and output fine-tuning to improve depth estimation
and reconstruction.

2. Related Work

In this section, we briefly discuss prior works in the fields
of SLAM and depth estimation.

2.1. SLAM

SLAM approaches can be classified according to the
input data type into depth-camera-based [13, 22, 17] or
monocular-camera-based [4, 16], and according to the
methodology applied into either feature-based [14, 16] or
direct [4, 5].

ORB-SLAM [16] is a feature-based, monocular ap-
proach that relies on sparsely extracted ORB features from
input images to reconstruction a sparse map of the scene, as
well as estimating the camera pose. It employs local bundle
adjustment and pose graph optimization. Large Scale Di-
rect(LSD) SLAM [4], on the other hand, is a direct monoc-

ular SLAM framework. Instead of keypoints, it operates di-
rectly on image intensities for both tracking and mapping.
Geometry is represented using semi-dense maps that only
include depth values in gradient areas of the input images.
This greatly improves efficiency, allowing deployment in
real time on a CPU.

Within the context of our work, a recently proposed
framework called gradSLAM [12] is of critical impor-
tance. It addresses the issue of differentiability in SLAM
pipelines by introduction of a differentiable computational
graph methodology. This allows gradient-based learning
by providing explicit gradients with respect to input im-
ages and depth maps. By integrating gradSLAM into self-
supervised learning models, they can be equipped with a
sense of spatial understanding. Furthermore, we depend on
the algorithm from the previously mentioned PointFusion
[13] to balance scene reconstruction quality with real-time
performance. It is based on a simple point representation,
which works directly with input depth or range data. The
memory and computational requirements are kept small by
integrating new data points into a global model via depth
map fusion, and the removal of points considered unstable.

2.2. Monocular Depth Estimation

Classic depth prediction methods employ hand-crafted
features and graphical models, using strong assumptions
on the scene geometry to yield regularized depth maps.
Recently developed deep convolutional neural networks



(CNNss) outperform previous methods in terms of accuracy
and robustness. These networks can be classified by their
level of supervision into supervised [3] and unsupervised,
also called self-supervised [8, 2, 7, 6, 1]. For this discussion
we will focus on self-supervised approaches, which are the
focus of our work.

GLNet [2] is a self-supervised framework for learn-
ing depth, optical flow, camera pose and intrinsics from
monocular video. By design of new loss functions cap-
turing multiple geometric constraints, an adaptive photo-
metric loss, model extensions to predict camera intrinsics,
and online refinement strategies, the network outperforms
previous self-supervised implementations on multiple tasks.
monodepth2 [8] demonstrates the effectiveness of a surpris-
ingly simple model including a minimum reprojection loss
to handle occlusions, a full-resolution multi-scale sampling
method to reduce visual artifacts, and an auto-masking loss
to deal with violated camera motion assumptions, in self-
supervised depth estimation.

The work of Godard et al. [7] proposed a stereo-based
model to do single image depth estimation in the absence of
ground-truth depth data. This is accomplished by exploiting
epipolar geometry constraints, and through a novel training
loss that enforces consistency between disparities relative to
both left and right images. Especially relevant to our model
is the work of Bian et al. [1], which establishes that degen-
erate camera motion in indoor handheld video, with a large
amount of rotation that acts as noise, is a critical obstacle
for unsupervised depth learning. They propose weak im-
age rectification to bridge the domain gap between out- and
indoor environments, allowing existing unsupervised mod-
els trained outdoors to be applied on indoor scenes. In our
own framework we apply their pre-trained indoor model for
depth estimation.

3. Methods

In this section we provide a detailed insight into our
online adaption module which is basically self-supervised
depth estimation through novel view synthesis. We first ex-
plain the basic building blocks for self-supervised depth es-
timation and then present self-supervision from the global
point cloud created by the PointFusion method.

3.1. Novel View Synthesis

Novel view synthesis synthesizes a novel image of a
scene from a new camera pose given another view of the
same scene as input. Given a target image I; we pass it
through the depth prediction network to obtain the target’s
depth D,. Using the camera intrinsics matrix K, the points
of the target image, p;, can be projected into 3D. Homoge-
neous points are then transformed according to the camera
motion profile Ttﬁs from the target view to the source view
ps- These operations can be summarized as:

bs ~ KTisDy (pr) K~ py (1)

The projected coordinates py are continuous values. To
obtain points from the source image Is(ps) for populating
the synthesized frame IAS (pt), we employ a differentiable
bilinear sampling mechanism [11]. This mechanism lin-
early interpolates on the 4 neighbouring pixels (top-left,
top-right, bottom-left, bottom-right) of ps such that:

I (pe) = Is (ps) = Zwijls (p?) @

ie{t,b},je{l,r}

where w%/ is linearly proportional to the spatial prox-
imity between p; and p¥, and sums up to 1 for the four
neighbouring pixels.
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Figure 2. Differentiable image warping. Each point p; in the target
image is projected onto the source image using the predicted target
depth and corresponding pose. Bilinear interpolation with four
neighbouring pixels of ps gives p: Image Credits: [23]

This process relies on monocular temporal sequence of
images where the target and source frames are temporal
neighbours i.e. individual frames in a monocular video. The
training procedure is driven by the minimization of the pho-
tometric error with the assumption of a static scene, no oc-
clusion/disocclusion between the target and source views,
and constant lighting conditions. The photometric error is a
combination of SSIM and L loss as:

Lpg = % (1 — SSIM (It,fs)) t(1-a) HIt -1/, ®

where the constant « is denotes the weighting of each
individual term. Even though the L, loss is robust in the
presence of outliers, it is not invariant to changes in illu-
mination of real-world scenes. The SSIM loss can handle
complex illumination changes because it normalizes pixel
illuminations. Invalid points are masked with photometric
error masking technique i.e. pixels outside the projection
flow. Using this entire process, we can train a model to
produce depth values that agree with the synthesis process.
Since we train for a number of refinement steps, our on-
line adaption module is prone to overfit. In order to prevent
overfitting to a single image pair, we enforce a regulariza-
tion on the depth estimates:

Rdepth :’7||D0—Dz|| i:071,...N (4)



where v is a weighting function to control the amount of
regularization and IV represents the total refinement steps.

3.2. End-2-End Point Self-Supervision

Due to the differentiable nature of gradSLAM[12], we
can leverage the global reconstructed pointcloud to refine
our depth maps in an online fashion. This task can be easily
coupled with the novel view synthesis framework from the
previous section. However, since we will compare point-
clouds, this supervision incurs additional cost at each re-
finement step. The global pointcloud G contains points that
are updated after online adaption has been applied to the
previous key-frames. Subsequently, these points are also
refined through depth map fusion within the PointFusion
based SLAM. Therefore, these points can be used to super-
vise future key-frames. At each refinement step, along with
novel view synthesis, we pass the I, D;, K, P, through
PointFusion to obtain a local pointcloud of the target frame
L;. We then transform L; to the source frame’s view using
the transform 7j_,¢ to obtain L;,,. Finally, the distance
between L; and G is computed such that:

Len (Gl = Y min o —yl3 + 3 min o — 3
IGGy ¢ yeL,
&)

where x corresponds to the points in the global point-
cloud and y corresponds to the points in the local point-
cloud. Points are padded where one pointcloud has more
points than the other and difference is taken with the near-
est neighbour. Our final online adaption module minimizes
the loss function given as:

Lontine = Lpe + Lop + Raeptn (6)

3.3. Uncertainty Prediction

Inspired by the idea of weighting pixels in either the pho-
tometric error [23, 8] or depth maps [20], we aim to lever-
age on predicted uncertainty maps that serve as a weighting
mask for the self-supervised loss. As discussed by Poggi et
al. [18], the uncertainty maps can be considered to represent
the variance o(d) of the target distribution to be learned,
where the predicted depth values correspond to the mean of
the distribution p(d). In this sense, depth maps are inferred
together with uncertainty maps via negative log-likelihood
minimization, which under the assumption of a Laplacian
distribution leads to minimizing a loss function given by

|(d) — d|
o(d)

where d* stands for ground truth depth values. However, it
has been shown [15] that for the self-supervised case Eq. 7

Llog = + 1Og U(d) @)

becomes

min, e, k] F(L(Q)v I(q))

ULog

Llog = + lOg ULog (8)

where min;¢(o.. k] F(I}(q),](q)) stands for the minimum
reprojection loss between target I(q) and synthesized frame
Ii(q). Note that the logur,, term in Eq. 8 acts as a
regularizer to avoid the trivial solution of setting urq4 to
infinity. Moreover, the network is trained to predict the
log-uncertainty (log ur04) as to prevent instability during
training due to divisions by 0. It should be noted that this
training procedure is independent from the online adapta-
tion module since the uncertainty head is pre-trained and
not modified during the online refinements.

4. Results

In this section we provide experimental results to val-
idate the effectiveness of online refinement module along
with the corresponding 3D reconstruction from PointFu-
sion. Note that all experiments were carried out with me-
dian scaling unless otherwise specified.

4.1. Implementation details

We use sequences from the TUM RGB-D SLAM dataset
[19] and the ICL-NUIM dataset [9], with an image size of
320 x 256. In our experiments, we used the weights of
the SC-SfMLearner model [1] pretrained on the indoor se-
quences of the rectified NYU Depth v2 dataset, in order to
have a reasonable starting point for our depth predictions.
The SSIM to L; loss weighting parameter, «, in Eq. 3 is set
to 0.15 and the depth regularization parameter, -, in Eq. 4 is
set to 1.e~2. In order to quantify our results, we report the
Abs-Rel, RMSE, and 0; metrics for the predicted and refined
depth predictions.

Groundtruth

Predicted Refined

Figure 3. Depth predictions and reconstructed point clouds of a
pair of key-frames taken from the ICL dataset. Left: Ground truth
Center: No online-refinement Right: Online-refinement
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Figure 4. Depth predictions and reconstructed point clouds of a
pair of key-frames taken from the TUM dataset. Left: Ground
truth Center: No online-refinement Right: Online-refinement

4.2. Online Adaptation Module

We present experimental evaluation to validate the
contributions of our method. As discussed before, self-
supervised indoor depth estimation is a challenging task.
We address these challenges by using the ground truth
poses rather than relying on PointFusion’s camera pose
estimation. Our main assumption behind this is the ubig-
uitous availability of pose information on modern devices.
Additionally, our self-supervised depth model is pre-trained
on weakly rectified NYU dataset which addressed the issue
of rotation noise [1]. The weak rectification acts as a
pre-processing step on the training data, which finds pair of
images with moderate translation and removes their relative
rotation for effective training.  Although prior works
have shown to use geometric losses [1] to ensure scale
consistency, we find that the scale is still not consistent
enough for our application. Another issue is that using
the geometric loss [1] in our online adaption module often
leads to depth converging to a single value. Using ground
truth poses, our model slowly adapts towards produce a
consistent scale factor after a few refinement steps since the
given pose information is scale consistent. Since we use
median scaling, our depth estimates and the ground truth
pose are on the same order of scale.

In order to show the effectiveness of our online adaption
module, we refine over a pair of key-frames for 25 steps.
In Fig. 3 and Fig. 4 it can be noticed that the initial depth
predictions are plausible due to pre-training, however, our
online adaption module is able to improve these predictions
further (see Tab. 1). Refining for numerous steps on a single
pair of key-frames can easily lead to overfitting. But we
emphasize that these particular results are meant to show
the effectiveness of our online adaption module. The depth
regularization term, Eq. 4, plays a key role to handle the
aforementioned problem of overfitting.

Dataset | Steps | Abs-Rel [ RMSE | 4; |

ICL 0 0.234 0.555 | 0.567
ICL 25 0.128 0.504 | 0.804
TUM 0 0.168 0.899 | 0.708
TUM 25 0.0893 | 0.810 | 0.889

Table 1. Quantitative evaluation of the online adaptation after ap-
plying 25 refinement steps.

4.3. Weak supervision

An addition to our method consists of integrating weak-
supervision into the pipeline through ground truth depth in-
formation. We wanted to investigate the effectiveness of
having pseudo-labels from old classic techniques, that could
act as a supervisory signal for the depth predictions. How-
ever, due to time constraints we relied on sparse ground
truth depth labels. In our case we used only 1% of the to-
tal amount of pixels. The weak supervision is integrated in
our model through an L; loss computed between the sparse
ground truth values and the depth predictions from our net-
work. As it can be seen in Fig. 5 and Fig. 6, introducing
weak supervision inside our model results in more accurate
depth predictions and reconstructed pointclouds. The disad-
vantage of this method is that it requires some ground-truth
information. A remedy to this, which could be investigated
in some future works, would be relying on noisy labels in-
stead, possibly calculated via semi-global matching tech-
nique.

(@ (b) (©
Figure 5. The sequence of images shows a comparison between
the ground truth depth map and the depth prediction after including
weak-supervision into the pipeline (1% of the pixels). The selected
keyframe is taken from the ICL-NUIM dataset. (a) Ground truth
depth map (b) Sparse ground truth values (c) Predicted depth map.

4.4. Uncertainty Prediction

We leveraged on the open-source implementation of our
rectified-NYU pre-trained model [1] and extended it as to
include the uncertainty prediction head, which corresponds
to a 3 x 3 conv layer that is applied to the decoder fea-
ture maps with the largest scale. Following the discussion
in [18] the extended network was trained from scratch ap-
plying an ImageNet initialization to the depth encoder. This
model was trained for 17 epochs, batch size 16, and learning
rate 0.0001. The original base model implementation con-



Figure 6. Comparison between global pointcloud reconstructions
without (left) and with (right) weak supervision of a sequence of
frames taken from the ICL-NUIM dataset.

sidered masking techniques for handling moving objects in
the scenes, as well as the addition of the smoothness and ge-
ometry consistency terms to the training loss. However, we
found that when combining these with the uncertainty re-
lated terms the training becomes unstable due to exploding
gradients in the early epochs. Thus, the model was trained
based on the minimization of the loss given by Eq. 8.

(@ (e)

Figure 7. Predictions from the augmented model with uncertainty
head. Each row contains a RGB frame (left) and its correspond-
ing depth (center) and uncertainty (right) predictions. Uncertainty
color band maps low-medium-high uncertainty values to black-
red-yellow colors, respectively.

The resulting predictions are shown in Figure 7. Con-
sidering 7(a) consistent depth 7(b) and uncertainty 7(c) pre-
dictions are obtained, where the highest uncertainty is as-
signed typically to edges in the scene, which usually cor-
respond to regions with the largest photometric error. On
the other hand, by looking into 7(d) it can be observed that
erroneous depth predictions 7(e) are obtained with overcon-
fident estimates 7(f) in most parts of the scene. We believe
this behavior is related with the dominance of low texture
regions affecting the self-supervised loss; notice that in 7(f)
the high confidence (low uncertainty) regions correspond
mainly to the white walls, homogeneous floor and white

board in 7(d). We found that the latter set of predictions
was far more common during the training procedure, hence
we did not combined the learned uncertainty head with the
online adaptation module.

5. Discussion

In our framework, the online adaption module faces two
issues:

* Since we train at test-time, we are prone to overfitting

to the given scene.

* GPU intensive operations and large model size
An important hyperparameter is the number of refinement
steps per key frame. Typically, in the same scene numerous
training samples look similar to each other, therefore we are
prone to overfitting to the training objective. Large learning
rates (le—*) are desirable to have less number of refinement
steps, however, this can also lead to overfitting. While re-
fining a single image pair, we noticed that there was trade
off between accuracy, number of refinement steps, and the
learning rate. The depth regularization term, Eq. 4, plays
a key role to handle both aforementioned problems that can
lead to overfitting.

Since we are refining at test-time, we need a GPU that
is sufficiently large enough to handle our ResNet-18 based
model and the corresponding optimization process. Another
bottleneck is storing the global pointcloud which increases
as we move through the scene. A smaller model size that
gives similar depth accuracy would therefore be a promis-
ing future work, since we can also reconstruct larger scenes
with the same amount of memory.

The aforementioned problems with indoor self-
supervised depth estimation were handled by leveraging
ground truth poses, however, in the future we would like
to be able to use SLAM poses in order to leverage the
full potential of SLAM. In addition, we noticed that the
scale inconsistency even after median scaling leads to bad
overlap between key-frames in the global pointcloud. We
hope to tackle this in upcoming future.

6. Conclusion

In this work we presented End-2-End Self-Supervised
SLAM to perform 3D reconstruction. We generalize to new
scenes using the online adaptation module that continuously
refines depth maps in a self-supervised way. Improvement
in this particular topic is heavily dependent on the chal-
lenges of indoor self-supervised depth estimation. Nonethe-
less, we improved the capabilities of online adaption mod-
ule through removing border artifacts, prevented overfitting
via depth regularization and most importantly supervision
from the global pointcloud. Poses recovered from SLAM
proved to be a challenge to use for online adaption, and still
remains as open work.
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A. Contributions

Our source code was written with the help of the grad-
SLAM library, monodepth?2 [8] and Bian et al. [1]. PointFu-
sion and visualization functions were also taken from grad-
SLAM [12]. The novel view synthesis, SSIM and smooth-
ness loss functions were taken from monodepth2 [8]. The
depth estimation network and geometric loss function im-
plementations were taken from Bian et al. [1]. The rest of
the source code was implemented by the team members as
mentioned in the contributions section below.

B. Additional Works
B.1. Gradient Experiments

gradSLAM [12] is a fully differentiable dense SLAM
framework that allows gradient flow from the 3D recon-
struction of the environment all the way through to inputs
i.e. color and depth images. In order to investigate how ef-
fective these gradients are, we carried out an experiment to
recover the RGB-D input from the 3D reconstruction. The
problem setup was designed as follows: given a sequence
of four RGB-D pairs along with corresponding camera
intrinsics and poses, we corrupted the fourth pair. The task
was to reconstruct the fourth pair by leveraging gradients
from comparison with the ground truth reconstruction (see
Fig. 8). The fourth pair was corrupted in different ways i.e.
adding Gaussian noise, removing a patch from the centre
of the image, and replacing the entire image by a constant
value.

We used the Chamfer distance loss from Eq. 5 to min-
imize the distance between the corrupted and ground truth
reconstruction. For color loss, we simply took the L; dis-
tance between the point’s color values in the corrupted and



ground truth reconstruction. The final loss function was de-
fined as:
Ltotal = Lcolm' + LC’D (9)

The fourth RGB-D pair itself is used as the parame-
ters that we optimize through gradient descent. We use
the Adam optimizer with a learning rate of 0.0001 and
train for 80 steps. The experimental results verified the
gradient propagation capabilities of gradSLAM. Gradients
from comparison of the pointclouds were able to recon-
struct a corrupted image through backpropagation. This
analysis helped us to formulate the End-2-End Point Self-
Supervision (see Sec. 3.2), such that we can leverage the
gradients from comparison of the transformed local point-
cloud with the global pointcloud to enhance our online re-
finement module.

B.2. Unsupervised Scale Learning

To leverage on ground truth poses our method needs to

refine the global scale of the predicted maps as to bring
the predicted depth values closer to the scale range of
the motion profile. One technique to change the scale of
depth predictions, commonly used in the literature for the
purpose of evaluating results against ground truth depths, is
median scaling [23], where the scale factor is computed as
5 = median(Dgy;)/median(Dpreq) thus relying in ground
truth depth maps. Given that our proposed approach aims
to avoid the use of ground truth depth we investigated
the feasibility of predicting an approximate scale through
minimization of the unsupervised loss in Eq. 3.
For this purpose an additional head was introduced in the
unsupervised depth refinement model, which takes as input
the predicted depth maps and transforms them by applying
an affine transformation, i.e. each pixel’s depth value is
multiplied by a constant scale factor and added an offset.
The transformed depth maps are utilized for the view
synthesis process. In terms of implementation, the scaling
head consists of a 1 x 1 convolutional layer with a bias term,
where the weight and bias represent the scale multiplier
and offset, respectively. Nevertheless, the implementation
of the transformation through a convolutional layer allows
to recover the traditional linear scaling technique, such as
median scaling, by simply disabling the bias term.

The scale prediction head was trained following the
online refinement workflow on a defined sequence of
three frames from the ICL dataset. However, in order to
mainly assess the effect of the parameters in the scaling
conv layer the depth prediction network was frozen after
initializing it with the pretrained model. Four different
initial configurations of the head were considered, each
with a predefined initialization value for the weight w
whereas the bias b was initialized according to the He
initialization scheme [10]. The model was trained to

optimize the defined sequence of frames until a plateau in
the loss was reached, with a learning rate of 0.04. Table
2 summarizes the resulting behaviour with the different
initial configurations. The performance of the learned
parameters with the smallest Abs-Rel error was evaluated
through 30 steps of the online refinement task in the same
sequence of frames considered during training and the
corresponding results are shown in Table 3. The model
using the learned scale parameters performs poorly in
terms of Abs-Rel and RMSE when compared to using the
median scaling factor. This suggests that the scale head is
not capable of fully capturing the depth estimation task in
hand and instead its training dynamics are misguided by the
aforementioned difficulties found during self-supervised
depth estimation, e.g. low-texture regions of indoor scenes.
Note, however, that this behaviour is consistent with
the local minima problem commonly found when using
photometric reprojection as the training loss [21].

Init Params | Photo | Abs-Rel | RMSE | Final Params
(w,b) (w,b)
3,-0.392 0.1127 | 0.6962 | 1.8643 | 1.06, 0.294
6, 0.831 0.1120 | 0.6507 | 1.6271 | 5.38,-0.949
7,-0.804 0.1119 | 0.6478 | 1.6194 | 5.45,-0.962
8, 0.322 0.1119 | 0.6383 | 1.5940 | 5.68,-1.014

Table 2. Training loss (Photo), metrics and learned parameters for
scale learning with different initial parameters configurations.

[ Scale | Abs-Rel | RMSE |
Median 0.2908 | 0.8788
Learned | 0.6730 | 1.8993

Table 3. Resulting metrics after 30 steps of online refinement using
median scale factor = 7.3586 and learned scale parameters.

B.3. Output Fine-tuning

Output fine-tuning[2] is the idea of refining the predicted
depth maps rather than the depth prediction model through
the proposed loss function (Eq. 6). During training, the
depth prediction model’s weights will be frozen since the
initial depth network is pre-trained and produces plausi-
ble results. The benifits of this method are that it updates
the depth predictions directly which contains much less pa-
rameters ( < 10k) compared to the depth prediction model
(ResNetl18 with 11M). In terms of refinement speed, this
method is one order (10x) faster. Our investigation showed
this speed up claim to hold true, however, the depth pre-
dictions were not improved significantly compared to our
online adaption module. Nevertheless, it is promising re-
search direction that can be beneficial to investigate in the
future.
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Figure 8. gradSLAM image reconstruction gradients experiment setup.
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Figure 9. Qualitative results for gradient experiment when the fourth input is corrupted by adding noise.
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Figure 10. Qualitative results for gradient experiment when the fourth input is corrupted by removing a patch from the middle of the
RGB-D frames.
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Figure 11. Qualitative results for gradient experiment when the fourth input is replaced by a constant value.




